i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.

I don't know how effectively I can communicate this answer via text without the whiteboard but I'll try.

i) First implicitly differentiate with respect to x: 2x + 2y * dy/dx = 0.

Rearranging gives dy/dx = -x/y. I would estimate this to be worth 3 marks

ii) The curve is parallel to the y axis when dx/dy = 0 or equivalently when dy/dx tends to inf. This can be seen by the denominator in our fraction for dy/dx tending to 0 => y=0. For y=0 we have two valid points from substituting back into the equation of the circle, solving the quadratic in x gives the two points (2,0) and (-2,0). (3 marks)

ii) The line will only intersect the circle once iff at the intersection point the value of dy/dx matches for both the line and the circle (A diagram would help clear this up). dy/dx for the line is 1 and substituting that into our result found in i) it is found that y= -x. Substitute that result back into the equation of the cirlce and you find that x^2 = 2. This pair of equations has 2 solutions (sqrt(2), -sqrt(2)), (-sqrt(2), sqrt(2)). From a sketch you would be able to see that the second of these points must be chosen for a positive c and subsituting that point into the equation of a straight line you find that c = 2*sqrt(2). (5 marks)

Answered by James D. Maths tutor

3512 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


What is differentiation and how is it used?


Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.


1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy