A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.

Using the law of conservation of energy, the potential energy of the block is transferred to kinetic energy as it slides down. KE [0.5mv2] = PE [mgh], v = √2gh v = √29.811 = 4.43 ms-1 The block's KE will be transferred back to PE as it rises so it will slide up to the same height it slid down from - 1m.

Answered by Oluwatosin S. Physics tutor

1548 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


If a wire loop moves at constant speed into a region where there is a magnetic field, why is a current induced in the wire?


How would you integrate ln(x)


Describe how a stationary wave is formed at a boundary?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy