How do I solve Hannah’s sweet question?

This refers to a question in the Edexcel GCSE paper this year which took students to Twitter venting their frustration. The question is as follows:

‘There are n sweets in a bag. 6 of the sweets are orange. The rest of the sweets are yellow.

Hannah takes a random sweet from the bag. She eats the sweet.

Hannah then takes at random another sweet from the bag. She eats the sweet.

The probability that Hannah eats two orange sweets is 1/3.

Show that n² – n – 90 = 0’

Seemingly out of nowhere you’re asked to prove that a certain quadratic equation holds using the information provided. The first three lines set up the situation whilst the fourth line provides you with some extra information to use to obtain the answer. Intuition should tell you that you need to calculate the probability that Hannah eats two orange sweet using the first three lines and then apply what you’re given in the fourth line.

So let’s do that. What’s the probability that the first sweet she eats from the bag is orange? There are n sweets in the bag, 6 of which are orange. So the probability is 6/n.

What’s the probability that the second sweet she eats from the bag is orange? Now there are n-1 sweets in the bag, 5 of which are orange (since she has eaten an orange sweet!). So the probability is 5/(n-1).

These two events are separate from one another, so the probability that both happen (i.e. both the sweets are orange) are the two probabilities multiplied together: 6/n × 5/(n-1) = 30/n(n-1)

But you’re told that this probability is 1/3! So all you need to do is set the expression equal to 1/3, rearrange and (hopefully!) obtain the required quadratic equation.

30/n(n-1) = 1/3

⇒ 90/n(n-1) = 1           (multiplying both sides by 3)

⇒ 90 = n(n-1)               (multiplying both sides by n(n-1))

⇒ n(n-1) – 90 = 0         (subtracting 90 from both sides)

⇒ n² – n – 90 = 0         (expanding the brackets)

Tah-dah. We’ve found the required equation and we’re done. This question was only worth three marks; a bit stingy in my opinion!

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, a GCSE Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£18 /hr

David H.

Degree: Chemistry (Bachelors) - Durham University

Subjects offered: Maths, Physics+ 1 more


“Hi, I'm David, an undergraduate student at the UK's second best chemistry department, at Durham University. I have a real enthusiasm for science, I love the feeling of working through a problem and watching all of the pieces slowly fi...”

MyTutor guarantee

£22 /hr

Sobia K.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Spanish+ 1 more

Further Mathematics

“Second year Maths Undergraduate, here to boost your grades!”

£18 /hr

Ann L.

Degree: Dentistry (Bachelors) - Birmingham University

Subjects offered: Maths, Chemistry+ 3 more

-Personal Statements-

“I'm Ann, a dental student, and I want you to succeed in your education. As a student ambassador for my university, and a past volunteer tutor at a local secondary school, I'm experienced in working with young people and inspiring you ...”

About the author

£24 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Maths, Further Mathematics + 1 more

Further Mathematics

“Third year undergraduate at one of the top universities for Maths. Eager to tutor and help improve your grades.”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other GCSE Maths questions

How Would I Factorise A Quadratic Equation?

There are 20 balls in a bag. The probability is 0.25 of picking a red ball. If one more red ball is added, what is the new probability of picking a red ball at random?

Finding Roots of Quadratic Equations

Every past paper I sit, I miss an A* by a few marks. How do I ensure that I reach that top grade?

View GCSE Maths tutors


We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss