MYTUTOR SUBJECT ANSWERS

903 views

How do I solve Hannah’s sweet question?

This refers to a question in the Edexcel GCSE paper this year which took students to Twitter venting their frustration. The question is as follows:

‘There are n sweets in a bag. 6 of the sweets are orange. The rest of the sweets are yellow.

Hannah takes a random sweet from the bag. She eats the sweet.

Hannah then takes at random another sweet from the bag. She eats the sweet.

The probability that Hannah eats two orange sweets is 1/3.

Show that n² – n – 90 = 0’

Seemingly out of nowhere you’re asked to prove that a certain quadratic equation holds using the information provided. The first three lines set up the situation whilst the fourth line provides you with some extra information to use to obtain the answer. Intuition should tell you that you need to calculate the probability that Hannah eats two orange sweet using the first three lines and then apply what you’re given in the fourth line.

So let’s do that. What’s the probability that the first sweet she eats from the bag is orange? There are n sweets in the bag, 6 of which are orange. So the probability is 6/n.

What’s the probability that the second sweet she eats from the bag is orange? Now there are n-1 sweets in the bag, 5 of which are orange (since she has eaten an orange sweet!). So the probability is 5/(n-1).

These two events are separate from one another, so the probability that both happen (i.e. both the sweets are orange) are the two probabilities multiplied together: 6/n × 5/(n-1) = 30/n(n-1)

But you’re told that this probability is 1/3! So all you need to do is set the expression equal to 1/3, rearrange and (hopefully!) obtain the required quadratic equation.

30/n(n-1) = 1/3

⇒ 90/n(n-1) = 1           (multiplying both sides by 3)

⇒ 90 = n(n-1)               (multiplying both sides by n(n-1))

⇒ n(n-1) – 90 = 0         (subtracting 90 from both sides)

⇒ n² – n – 90 = 0         (expanding the brackets)

Tah-dah. We’ve found the required equation and we’re done. This question was only worth three marks; a bit stingy in my opinion!

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, a GCSE Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

511 SUBJECT SPECIALISTS

£36 /hr

Joe B.

Degree: Mathematics G100 (Bachelors) - Bath University

Subjects offered:Maths, Further Mathematics + 4 more

Maths
Further Mathematics
Economics
.STEP.
.MAT.
-Personal Statements-

“About Me Hi, I'm Joe, a first year mathematics student from Luton studying at Bath University. I am an accomplished mathematician and economist, having achieved A* grades in A Level Maths, Further Maths and Economics in June 2016. As ...”

£18 /hr

Dominique G.

Degree: Classics (Bachelors) - Cambridge University

Subjects offered:Maths, Latin+ 5 more

Maths
Latin
English Literature
English Language
Classical Greek
-Personal Statements-
-Oxbridge Preparation-

“Hi there! I'm Dommy, a third year undergraduate reading Classics at St. John's College, Cambridge and am currently on a year abroad at the University of Pavia, Italy. I am friendly and enthusiastic about learning and have previously t...”

£18 /hr

Guillermo C.

Degree: MSc Mathematical Sciences (Masters) - Durham University

Subjects offered:Maths

Maths

“Mathematics Masters Student at Durham University, with over five years of experience at teaching, willing to make your grades go up!”

MyTutor guarantee

About the author

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

George B.

Currently unavailable: for new students

Degree: Mathematics (Masters) - Warwick University

Subjects offered:Maths, Further Mathematics + 1 more

Maths
Further Mathematics
.STEP.

“Fourth year undergraduate at one of the top universities for Maths. Eager to tutor and help improve your grades.”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other GCSE Maths questions

Find the values of x for the equation: x^2 - 8x = 105

How do you solve an equation with brackets?

simplify (x-1)^2 - (x-1)

Solve algebraically: 6x + y = 16, 5x - 2y = 19

View GCSE Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok