What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

This is a question from a C4 paper.

The first task is to translate the equation into something you’re more familiar with: write the equation in terms of sin(θ) and cos(θ). To do this use we’ll first need the definition of cosec(θ) and cot(θ). A trick for remembering which is which is to look at the third letter:

cosec(θ) = 1/sin(θ)              sec(θ) = 1/cos(θ)              cot(θ) = 1/tan(θ)

So let’s employ these definitions:

cosec(θ) + 5cot(θ) = 3sin(θ)

⇒ 1/sin(θ) + 5/tan(θ) = 3sin(θ)                   (using definitions of cosec(θ) and cot(θ))

⇒ 1/sin(θ) + 5cos(θ)/sin(θ) = 3sin(θ)        (using tan(θ) = sin(θ)/cos(θ))

⇒ 1 + 5cos(θ) = 3sin²(θ)                                (multiplying both sides by sin(θ))

Notice that we can now completely remove the sin(θ) term from the equation and leave only cos(θ) by using the identity sin²(θ) + cos²(θ) ≡ 1:

⇒ 1 + 5cos(θ) = 3(1- cos²(θ))

⇒ 3cos²(θ) + 5cos(θ) - 2 = 0

That’s much nicer. We now have a quadratic equation in terms of cos(θ).

Factorising gives (3cos(θ) - 1)(cos(θ) + 2) = 0 giving us solutions cos(θ) = 1/3 and cos(θ) = -2. Note that the second solution is not possible, since the graph of cos(θ) is bounded below by -1, so never attains the value -2. So we may discard it leaving only cos(θ) = 1/3 to worry about.

Plugging θ = arccos(1/3) into your calculator (with your calculator in radians!) gives 1.23 to 2 decimal places.

However, this is only half the answer. The question asked for solutions in the range 0 to 2π. We now have to use the cos(θ) graph to find all remaining solutions. I usually do this by drawing a quick sketch of cos(θ) from 0 to 2π and a horizontal line at y = 1/3. Upon doing so you will see there are 2 solutions in this range. By the sketch and the symmetry of the cos(θ) graph you should be able to deduce the other solution is 2π-1.23 = 5.05 to 2 decimal places.

As usual, plugging the solutions you get back into the equation is a great way to check whether you’ve got the correct answer!

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£20 /hr

Ioannis P.

Degree: Computer Science (Bachelors) - Warwick University

Subjects offered:Maths


“Maths and Computer Science are both my passion. Having tutored students in the past, they think that my methods seem very intuitive and natural; you will too.”

£22 /hr

Kashf S.

Degree: Chemistry (Bachelors) - University College London University

Subjects offered:Maths, Chemistry


“Hi, I'm a first year Chemistry student at UCL, I have experience in tutoring and am willing to tutor people of all abilities”

£20 /hr

Madeleine N.

Degree: Maths and Physics (Masters) - Durham University

Subjects offered:Maths, Spanish+ 2 more

Further Mathematics

“Enthusiastic student, studying Maths and Physics at Durham university: keen to work hard with students to improve their results.”

About the author

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...
£26 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered:Maths, Further Mathematics + 1 more

Further Mathematics

“Fourth year undergraduate at one of the top universities for Maths. Eager to tutor and help improve your grades.”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other A Level Maths questions

How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?

What is Taylor Series

How to integrate e^(5x) between the limits 0 and 1.

Differentiate 4x^2 + 2ln3x + e^x

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss