MYTUTOR SUBJECT ANSWERS

345 views

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

This is a question from a FP1 paper. Here i denotes √-1.

Fact that should be burned into your soul: ‘Complex roots of a polynomial equation with real coefficients form conjugate pairs’. This tells you if z = x + yi is a root then so is its conjugate z* = x – yi. Using this fact, we can deduce that 2 + i and -1 – 2i are also roots of P(z) = 0.

So we now have 4 roots of our quartic equation P(z) = 0, so that’s all of them! We can now employ the factor theorem that you (probably) met in C1. Remember, this states that if z = α is a root of a polynomial then (z – α) is a factor of that polynomial.

So, since we’re told the leading coefficient of P(z) is 1 we can apply the factor theorem to deduce that

P(z) = (z – (2 - i))(z – (2 + i))(z – (-1 + 2i))(z – (-1 - 2i))

So now all it comes down to is some tedious expansion of brackets and a bit of simplification. It’s a good exercise to build your confidence with complex numbers.

⇒ P(z) = (z – 2 + i)(z – 2 – i)(z + 1 – 2i)(z + 1 + 2i)

⇒ P(z) = (z² - 2z – zi – 2z + 4 + 2i + zi - 2i - i²)(z² + z + 2zi + z + 1 + 2i – 2zi – 2i - 4i²)

⇒ P(z) = (z² - 4z + 5)(z² + 2z + 5)                           [Remember: i² = - 1 by definition]

⇒ P(z) = z⁴ + 2z³ + 5z² - 4z³ - 8z² - 20z  + 5z² + 10z + 25

⇒ P(z) = z⁴ - 2z³ + 2z² - 10z + 25

Thus a = -2, b = 2, c = -10, d = 25 and we’re done.

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, an A Level Further Mathematics tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

62 SUBJECT SPECIALISTS

£20 /hr

Oliver T.

Degree: Mathematics (Masters) - Edinburgh University

Subjects offered: Further Mathematics , Maths

Further Mathematics
Maths

“Hello! I'm currently a 2nd year Mathematics student at the University of Edinburgh with a sturdy passion for all things Mathematics. Not only do I love Maths, I love teaching Maths and helping people with problems. In particular, I en...”

£20 /hr

Alex W.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Further Mathematics , Physics+ 1 more

Further Mathematics
Physics
Maths

“Hi i'm Alex. I am currently a first year Maths student at Warwick University, and can tutor you in Maths, Further Maths and Physics at both GCSE and A-Level. I have had plenty of teaching experience before so I can hopefully help you ...”

MyTutor guarantee

£20 /hr

Scott R.

Degree: PGCE Secondary Mathematics (Other) - Leeds University

Subjects offered: Further Mathematics , Maths

Further Mathematics
Maths

“About Me: I am current studying a PGCE at Leeds University and should be a fully qualified teacher by the end of June 2017. I also studied maths at Leeds where I got my degree. I have always had a passion for maths and my objective is...”

About the author

George B.

Currently unavailable: for new students

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Further Mathematics , Maths+ 1 more

Further Mathematics
Maths
.STEP.

“Third year undergraduate at one of the top universities for Maths. Eager to tutor and help improve your grades.”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other A Level Further Mathematics questions

Express cos(4x) in terms of powers of cos(x)

Integrate cos(4x)sin(x)

Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.

Prove by induction that 11^n - 6 is divisible by 5 for all positive integer n.

View A Level Further Mathematics tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok