MYTUTOR SUBJECT ANSWERS

788 views

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

This is a question from a FP1 paper. Here i denotes √-1.

Fact that should be burned into your soul: ‘Complex roots of a polynomial equation with real coefficients form conjugate pairs’. This tells you if z = x + yi is a root then so is its conjugate z* = x – yi. Using this fact, we can deduce that 2 + i and -1 – 2i are also roots of P(z) = 0.

So we now have 4 roots of our quartic equation P(z) = 0, so that’s all of them! We can now employ the factor theorem that you (probably) met in C1. Remember, this states that if z = α is a root of a polynomial then (z – α) is a factor of that polynomial.

So, since we’re told the leading coefficient of P(z) is 1 we can apply the factor theorem to deduce that

P(z) = (z – (2 - i))(z – (2 + i))(z – (-1 + 2i))(z – (-1 - 2i))

So now all it comes down to is some tedious expansion of brackets and a bit of simplification. It’s a good exercise to build your confidence with complex numbers.

⇒ P(z) = (z – 2 + i)(z – 2 – i)(z + 1 – 2i)(z + 1 + 2i)

⇒ P(z) = (z² - 2z – zi – 2z + 4 + 2i + zi - 2i - i²)(z² + z + 2zi + z + 1 + 2i – 2zi – 2i - 4i²)

⇒ P(z) = (z² - 4z + 5)(z² + 2z + 5)                           [Remember: i² = - 1 by definition]

⇒ P(z) = z⁴ + 2z³ + 5z² - 4z³ - 8z² - 20z  + 5z² + 10z + 25

⇒ P(z) = z⁴ - 2z³ + 2z² - 10z + 25

Thus a = -2, b = 2, c = -10, d = 25 and we’re done.

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, an A Level Further Mathematics tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

149 SUBJECT SPECIALISTS

£20 /hr

Eleanor J.

Degree: Natural Sciences in Maths and Physics (Masters) - Durham University

Subjects offered:Further Mathematics , Physics+ 1 more

Further Mathematics
Physics
Maths

“Study Maths and Physics at Durham Previous tutoring experience Enjoy helping students improve and enjoy the subjects Adaptable to different academic needs”

MyTutor guarantee

|  1 completed tutorial

£30 /hr

Joe C.

Degree: Mathematics (Bachelors) - Bristol University

Subjects offered:Further Mathematics , Maths

Further Mathematics
Maths

“Hi, I'm Joe, an experienced tutor and a University of Bristol graduate with a first class Degree in Mathematics.”

£36 /hr

Joe B.

Degree: Mathematics G100 (Bachelors) - Bath University

Subjects offered:Further Mathematics , Maths+ 3 more

Further Mathematics
Maths
.STEP.
.MAT.
-Personal Statements-

“Hi! I'm Joe, a friendly, experienced and patient tutor with in-depth knowledge of both the old and new A Level Maths & Further Maths specifications.”

About the author

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...
£26 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered:Further Mathematics , Maths+ 1 more

Further Mathematics
Maths
.STEP.

“Premium tutor. First class graduate with teaching experience from a top Russell Group university. I deliver fun and relaxed lessons which achieve results!”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other A Level Further Mathematics questions

Prove that (AB)^-1 = B^-1 A^-1

Prove that sum(k) from 0 to n is n(n+1)/2, by induction

How do I solve a simultaneous equation with more unknowns than equations?

Find the general solution of the second order differential equation: y''+2y'-3 = 0

View A Level Further Mathematics tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok