MYTUTOR SUBJECT ANSWERS

724 views

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

This is a question from a FP1 paper. Here i denotes √-1.

Fact that should be burned into your soul: ‘Complex roots of a polynomial equation with real coefficients form conjugate pairs’. This tells you if z = x + yi is a root then so is its conjugate z* = x – yi. Using this fact, we can deduce that 2 + i and -1 – 2i are also roots of P(z) = 0.

So we now have 4 roots of our quartic equation P(z) = 0, so that’s all of them! We can now employ the factor theorem that you (probably) met in C1. Remember, this states that if z = α is a root of a polynomial then (z – α) is a factor of that polynomial.

So, since we’re told the leading coefficient of P(z) is 1 we can apply the factor theorem to deduce that

P(z) = (z – (2 - i))(z – (2 + i))(z – (-1 + 2i))(z – (-1 - 2i))

So now all it comes down to is some tedious expansion of brackets and a bit of simplification. It’s a good exercise to build your confidence with complex numbers.

⇒ P(z) = (z – 2 + i)(z – 2 – i)(z + 1 – 2i)(z + 1 + 2i)

⇒ P(z) = (z² - 2z – zi – 2z + 4 + 2i + zi - 2i - i²)(z² + z + 2zi + z + 1 + 2i – 2zi – 2i - 4i²)

⇒ P(z) = (z² - 4z + 5)(z² + 2z + 5)                           [Remember: i² = - 1 by definition]

⇒ P(z) = z⁴ + 2z³ + 5z² - 4z³ - 8z² - 20z  + 5z² + 10z + 25

⇒ P(z) = z⁴ - 2z³ + 2z² - 10z + 25

Thus a = -2, b = 2, c = -10, d = 25 and we’re done.

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, an A Level Further Mathematics tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

120 SUBJECT SPECIALISTS

£20 /hr

Mabast H.

Degree: Physics (Bachelors) - Imperial College London University

Subjects offered:Further Mathematics , Physics+ 3 more

Further Mathematics
Physics
Maths
Chemistry
-Personal Statements-

“Undergraduate Physicist with lots of experience in teaching in different fields and age groups, looking to instil a passion for learning into students.”

MyTutor guarantee

£30 /hr

Mathew V.

Degree: Mathematics (Bachelors) - Warwick University

Subjects offered:Further Mathematics , Physics+ 1 more

Further Mathematics
Physics
Maths

“Hi there! I’m Mathew, a 3rd year undergraduate student of Mathematics at Warwick University. For A-Levels I studied Maths, Further Maths, Further Additional Maths and Physics. I also worked at a local tuition centre for 2 years prior ...”

£24 /hr

Ayusha A.

Degree: BEng electrical and electronics engineering (Bachelors) - Newcastle University

Subjects offered:Further Mathematics , Physics+ 1 more

Further Mathematics
Physics
Maths

“About me: I am a final year Electrical and Electronic Engineering student at Newcastle University. I took Mathematics, Further Mathematics, Chemistry and Physics as my A-level subjects. I did peer mentoring in university and also have...”

About the author

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...
£26 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered:Further Mathematics , Maths+ 1 more

Further Mathematics
Maths
.STEP.

“Fourth year undergraduate at one of the top universities for Maths. Eager to tutor and help improve your grades.”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other A Level Further Mathematics questions

Can you express 3 + 4j in polar form?

Solve the inequality x^3 + x^2 > 6x

Solve (z-i)+(z+i)+(z-1)+(z-1)

How to determine the modulus of a complex number?

View A Level Further Mathematics tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok