MYTUTOR SUBJECT ANSWERS

683 views

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

This is a question from a STEP II paper.

STEP questions always give you just enough information to solve the problem; we’re looking to use everything that we’re given. The first thing we should do is differentiate f(x) by the product rule. This is a step up from A-level since we’re considering a general function P(x), but the product rule still works just as usual:

f’(x) = P’(x)e^(-x²) - 2xP(x)e^(−x²) = e^(−x²)[P’(x) – 2xP(x)]

Now we can set the derivative we’ve found equal to zero for x = 0, ±a and ±b.

       •   f’(0) = P’(0) = 0

       •   f’(a) = e^(-a²)[P’(a) – 2aP(a)] = 0  ⇒  P’(a) - 2aP(a) = 0

       •   f’(-a) = e^(-a²) [P’(-a) + 2aP(-a)] = 0  ⇒  P’(-a) + 2aP(-a) = 0

       •   f’(b) = e^(-b²)[P’(b)– 2bP(b)] = 0  ⇒  P’(b) - 2bP(b) = 0

       •   f’(-b) = e^(-b²)[P’(-b) + 2bP(-b)] = 0  ⇒  P’(-b) + 2bP(-b) = 0

The only information we’re given that’s left is that the derivative of f(x) isn’t zero for any other values of x. So e^(−x²)[P’(x) – 2xP(x)] ≠ 0 for any other values of x. Since e^(−x²) is always non-zero we can deduce that P’(x) – 2xP(x) ≠ 0 for any other values of x.

We can now combine everything we know together: P’(x) - 2xP(x) = 0 ONLY for x = 0, ±a, ±b.

How do we proceed now? We’ve used all the information given in the question. Let’s look back at what we’re asked to do: we’re asked to find a polynomial P(x) which satisfies the above conditions. The trick here is to equate the polynomial P’(x) – 2xP(x) to a polynomial that we already know equals zero ONLY for x = 0, ±a, ±b. Then by comparing coefficients we can find coefficients for P(x). Let’s use x(x - a)(x + a)(x - b)(x + b) = x(x² - a²)(x² - b²) = x⁵ - (a² + b²)x³ + a²b²x.

What order does P(x) need to be? The order of x⁵ - (a² + b²)x³ + a²b²x is 5, so in order for P’(x) – 2xP(x) to have order 5 as well P(x) needs to have order 4.

Note that x⁵ - (a² + b²)x³ + a²b²x has no x⁴ or x² terms so our P(x) should have no x³ or x terms to avoid x⁴ or x² terms cropping up in P’(x) – 2xP(x).

Thus P(x) = αx⁴ + βx² + γ for some α, β, γ to be determined.

P’(x) – 2xP(x) = (4αx³ + 2βx) – (2αx⁵ + 2βx³ + 2γx) = –2αx⁵ + (4α - 2β)x³ + (2β - 2γ)x

And now we equate coefficients:

–2αx⁵ + (4α - 2β)x³ + (2β - 2γ)x ≡ x⁵ - (a² + b²)x³ + a²b²x

       •   –2α = 1 ⇒ α = -0.5

       •   4α - 2β = - a² - b²  ⇒ -2 - 2β = - a² - b² ⇒ β = (a² + b² - 2)/2

       •   2β - 2γ = a²b² ⇒ a² + b² - 2 - 2γ = a²b² ⇒ γ = (a² + b²-  a²b² - 2)/2

Hence P(x) = -0.5x⁴ + (a² + b² - 2)x²/2 + (a² + b²-  a²b² - 2)/2 is a solution. 

George B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...

2 years ago

Answered by George, an Uni Admissions Test .STEP. tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

26 SUBJECT SPECIALISTS

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...
£28 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered:.STEP., Maths+ 1 more

.STEP.
Maths
Further Mathematics

“Premium tutor. First class graduate with teaching experience from a top Russell Group university. I deliver fun and relaxed lessons which achieve results!”

£28 /hr

Edoardo M.

Degree: Mathematics (Bachelors) - Bath University

Subjects offered:.STEP., Maths

.STEP.
Maths

“Hi! My name is Edoardo, and I'm a Maths student at the University of Bath. I would be really excited to start working with you. ”

£36 /hr

James G.

Degree: Mathematical Physics (Doctorate) - Nottingham University

Subjects offered:.STEP., Physics+ 2 more

.STEP.
Physics
Maths
Further Mathematics

“Currently a 3rd year PhD student in Mathematical Physics. I'm very passionate about teaching as well as my subject area. Look forward to hearing from you.”

About the author

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...
£28 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered:.STEP., Maths+ 1 more

.STEP.
Maths
Further Mathematics

“Premium tutor. First class graduate with teaching experience from a top Russell Group university. I deliver fun and relaxed lessons which achieve results!”

You may also like...

Posts by George

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of f(x) = P(x)e^(−x²) is zero for x = 0, x = ±a and x = ±b, but for no other values of x.

How do I solve Hannah’s sweet question?

Let P(z) = z⁴ + az³ + bz² + cz + d be a quartic polynomial with real coefficients. Let two of the roots of P(z) = 0 be 2 – i and -1 + 2i. Find a, b, c and d.

What values of θ between 0 and 2π satisfy the equation cosec(θ) + 5cot(θ) = 3sin(θ)?

Other Uni Admissions Test .STEP. questions

Prove: If pq, or p + q is irrational, then at least one of p and q is irrational.

Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.

How can I integrate e^x sin(x)?

Show that substituting y = xv, where v is a function of x, in the differential equation "xy(dy/dx) + y^2 − 2x^2 = 0" (with x is not equal to 0) leads to the differential equation "xv(dv/dx) + 2v^2 − 2 = 0"

View Uni Admissions Test .STEP. tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok