Prove that between every two rational numbers a/b and c/d, there is a rational number (where a,b,c,d are integers)

  • Google+ icon
  • LinkedIn icon
  • 1321 views

Attempting to find the average of a/b and c/d, we have: 

(a/b+c/d)/2 = [(ad+bc)/bd]/2 = (ad+bc)/2bd

As a,b,c,d are integers, we know that ad+bc and 2bd are also integers, as the addition and multiplication of integers will always lead to another integer. 

Therefore, we can write x=ad+bc and y=2bd, where x and y are integers.

It follows that the average between a/b and c/d is now equal to x/y

As x and y are integers, x/y will be a rational number situated between a/b and c/d. 

This proof applies to any integers a,b,c,d where b and d are non-zero integers

Andra-Lorena G. A Level Maths tutor, GCSE Maths tutor

About the author

is an online A Level Maths tutor with MyTutor studying at Exeter University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok