924 views

### Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.

Recall that for two lines to be skew they must satisfy two conditions:

1) They must not be parallel.

2) They must not intersect.

We shall check each condition individually.

Condition 1

The general vector equation of a line is given by

r = a + kb,

where a is the position vector of some point on the line, k is a scalar, and b is the direction vector of the line. The direction vector of the line, as the name suggests, dictates in what direction the line travels; b tells us how the line is orientated in space.

For two lines to be parallel, the direction vector of one line must be equal to some scalar multiple of the second line. However, for our two lines, it is clear that there exists no scalar k for which

(-1,2,2) = k(1,3,5).

Thus, the two lines cannot be parallel.

Condition 2

Let us assume that the two lines do in fact intersect. In other words, that

(1,4,1)+s(-1,2,2) = (2,8,2)+t(1,3,5)

for some numbers s and t.

This vector equation leads to three simultaneous equations:

1-s = 2+t   (1), 4+2s = 8+3t   (2), 1+2s = 2+5t   (3).

If we add 2 times Eq. (1) to Eq. (2), we get that

t = -6/5.

If we substitute this value of t into, say, Eq. (3), we get that

s = -5/2.

However, subsituting both of these values into  Eq. (2) yields a contradiction. The LHS gives

4+2(-5/2) = 4-5 = -1,

whereas the RHS gives

8+3(-6/5) = 22/5.

Clearly, then, the LHS is not equal to the RHS; the system of equations is inconsistent, and so the lines do not intersect.

We have shown that the given lines satisfy both of the necessary conditions to be classified as skew. The lines are therefore skew, as required.

2 years ago

Answered by Dorian, an A Level Maths tutor with MyTutor

## Still stuck? Get one-to-one help from a personally interviewed subject specialist

#### 347 SUBJECT SPECIALISTS

£24 /hr

Degree: Medicine (Bachelors) - Edinburgh University

Subjects offered:Maths, Chemistry+ 3 more

Maths
Chemistry
Biology
-Personal Statements-
-Medical School Preparation-

“Hi, I'm a first year medic at Edinburgh. I've had 7 years' worth of experience teaching children Maths and English and have mentored lower school peers, so I'm bound to have an approach that will suit your learning style!”

£36 /hr

Degree: Architecture and Environmental Engineering (Masters) - Nottingham University

Subjects offered:Maths, Physics+ 2 more

Maths
Physics
Design & Technology
-Personal Statements-

“Hi there, I have a passion for helping students achieve, and believe that with my 200+ hours of experience, we will be able to surpass the grades you want!”

£26 /hr

Degree: PGCE Secondary Mathematics (Other) - Leeds University

Subjects offered:Maths, Further Mathematics

Maths
Further Mathematics

“I am currently completing 2 PGCEs in Leeds. I have always had a passion for maths and my objective is to help as many as possible reach their full potential.”

£26 /hr

Degree: Theoretical Physics (Masters) - Durham University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“About Me As a Theoretical Physics student at Durham University, I am more than aware of all of the confusing turns that science can take. I have areal passion for my subject, and hope to show my students howbeautiful science can be.  ...”

### You may also like...

#### Posts by Dorian

A satellite is in a stationary orbit above a planet of mass 8.9 x 10^25 kg and period of rotation 1.2 x 10^5 s. Calculate the radius of the satellite's orbit from the centre of the planet.

Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.

Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

#### Other A Level Maths questions

How do you integrate by parts?

When you integrate a function why do you add a constant?