MYTUTOR SUBJECT ANSWERS

536 views

Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.

Recall that for two lines to be skew they must satisfy two conditions:

1) They must not be parallel.

2) They must not intersect.

We shall check each condition individually. 

Condition 1

The general vector equation of a line is given by

r = a + kb,

where a is the position vector of some point on the line, k is a scalar, and b is the direction vector of the line. The direction vector of the line, as the name suggests, dictates in what direction the line travels; b tells us how the line is orientated in space. 

For two lines to be parallel, the direction vector of one line must be equal to some scalar multiple of the second line. However, for our two lines, it is clear that there exists no scalar k for which

(-1,2,2) = k(1,3,5).

Thus, the two lines cannot be parallel.

Condition 2

Let us assume that the two lines do in fact intersect. In other words, that

(1,4,1)+s(-1,2,2) = (2,8,2)+t(1,3,5)

for some numbers s and t.

This vector equation leads to three simultaneous equations:

1-s = 2+t   (1), 4+2s = 8+3t   (2), 1+2s = 2+5t   (3).

If we add 2 times Eq. (1) to Eq. (2), we get that

t = -6/5.

If we substitute this value of t into, say, Eq. (3), we get that

s = -5/2.

However, subsituting both of these values into  Eq. (2) yields a contradiction. The LHS gives

4+2(-5/2) = 4-5 = -1,

whereas the RHS gives

8+3(-6/5) = 22/5.

Clearly, then, the LHS is not equal to the RHS; the system of equations is inconsistent, and so the lines do not intersect.

We have shown that the given lines satisfy both of the necessary conditions to be classified as skew. The lines are therefore skew, as required.

Dorian A. A Level Physics tutor, A Level Maths tutor, A Level Further...

1 year ago

Answered by Dorian, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

249 SUBJECT SPECIALISTS

£20 /hr

Ed W.

Degree: Medicine (Bachelors) - Edinburgh University

Subjects offered: Maths, Further Mathematics + 3 more

Maths
Further Mathematics
Chemistry
Biology
-Medical School Preparation-

“Hi! I'm Ed and I'm currently studying Medicine at the University of Edinburgh. I tutor at GCSE and A Level forBiology, Chemistry and Maths, and at GCSE level forFurther Maths. These are subjects I'm very comfortable in and enjoy. With ...”

£26 /hr

Ryan B.

Degree: Natural Sciences (Masters) - Durham University

Subjects offered: Maths, Science+ 2 more

Maths
Science
Physics
Chemistry

“I am currently a 1st year student at Durham University studying Natural Sciences. I have always had apassion for science and believe that developing your interest in the subject, during these sessions, will be the key to your success....”

£20 /hr

Saanya A.

Degree: Medicine (Bachelors) - Birmingham University

Subjects offered: Maths, Science

Maths
Science

“Me: I am currently a first year medical student studying at the University of Birmingham. I studied Mathematics, Further Mathematics, Biology and Chemistry at A-level. I have had previous experience at Accelerated Education Tuition wh...”

About the author

Dorian A.

Currently unavailable: for new students

Degree: Theoretical Physics (Masters) - Durham University

Subjects offered: Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“About Me As a Theoretical Physics student at Durham University, I am more than aware of all of the confusing turns that science can take. I have areal passion for my subject, and hope to show my students howbeautiful science can be.  ...”

You may also like...

Posts by Dorian

A satellite is in a stationary orbit above a planet of mass 8.9 x 10^25 kg and period of rotation 1.2 x 10^5 s. Calculate the radius of the satellite's orbit from the centre of the planet.

Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.

Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

Other A Level Maths questions

Differentiate with respect to x: 4(x^3) + 2x

What is the derivative of y=(e^(2x))(sin(3x))

How does finding the gradient of a line and the area under a graph relate to real world problems?

How can I remember trig identities?

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok