MYTUTOR SUBJECT ANSWERS

2688 views

Find the coordinates of the stationary points of the curve y = 2x^3 + 3x^2 - 12x + 1

This is a typical A/S level question, which can be broken down into three key steps.

1) Differentiation: Remember that at a stationary point, the gradient of the curve is zero. Therefore, we first have to find the gradient, which means differentiating. (Multiply the coefficient of x by the power, and then reduce the power by 1)

y = 2x3 + 3x2 - 12x + 1

dy/dx = 6x2 + 6x - 12

2) Solve Quadratic: To find where the gradient is zero (dy/dx = 0), we must solve the quadratic equation,

dy/dx = 6x2 + 6x - 12 = 0.

This quadratic can be most easily solved by factorisation (alternative methods are completing the square and using the quadratic formula). 

Firstly we can take 6 out as a common factor, which results in 6(x+ x - 2) = 0. We can then factorise the terms in brackets which results in 6(x+2)(x-1) = 0.

This gives the two solutions x = -2, x = 1.

3) Substitution: So far, we have only found the x coordinate of the stationary point, but to answer the question fully we need the y coordinate as well. We do this by substituting x = -2, and x = 1 into the original equation of the curve, y = 2x3 + 3x- 12x + 1

When x = -2, we can calcuclate that y = 21. Similarly when x = 1, y = -6.

Thus the coordinates of the stationary points are (-2, 21) and (1, -6).

Barnum S. A Level Maths tutor, A Level Further Mathematics  tutor, A ...

2 years ago

Answered by Barnum, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

431 SUBJECT SPECIALISTS

£22 /hr

Ruth N.

Degree: Economics (Bachelors) - Cambridge University

Subjects offered:Maths, Economics+ 2 more

Maths
Economics
-Personal Statements-
-Oxbridge Preparation-

“Economics Graduate from Cambridge, wanting to share my passion for the discipline”

£20 /hr

Pankaj K.

Degree: Physics (Bachelors) - Kings, London University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“Positive, Dedicated, Motivating, Calm, Patient, Understanding, Professional, Organised, Experienced, Focused, Enthusiastic, Passionate”

MyTutor guarantee

|  1 completed tutorial

PremiumGeorge B. GCSE Maths tutor, A Level Maths tutor, A Level Further Math...
£26 /hr

George B.

Degree: Mathematics (Masters) - Warwick University

Subjects offered:Maths, Further Mathematics + 1 more

Maths
Further Mathematics
.STEP.

“Premium tutor. First class graduate with teaching experience from a top Russell Group university. I deliver fun and relaxed lessons which achieve results!”

About the author

£24 /hr

Barnum S.

Degree: Mathematics (Bachelors) - Cambridge University

Subjects offered:Maths, Science+ 3 more

Maths
Science
Physics
Further Mathematics
.STEP.

“My name is Barnum and I am a second year maths undergraduate at Cambridge University. I have A-Levels in Maths, Further Maths, Physics, Chemistry and German,all at grade A*.  I am patient, friendly and passionate about maths and sci...”

You may also like...

Other A Level Maths questions

What is the integral of (cos(x))^2?

Find the gradient of a curve whose parametric equations are x=t^2/2+1 and y=t/4-1 when t=2

When do I use the chain rule and when do I use the product rule in differentiation?

Show that sin2A is equal to 2sinAcosA

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok