Find the value of 2∫1 (6x+1) / (6x2-7x+2) dx, expressing your answer in the form mln(2) + nln(3), where m and n are integers.

This fraction can’t be integrated easily, but if we split it using partial fractions, these will be easier to integrate. To do this, we need to factoise the denominator, as this will follow the method of partial fractions:

21 (6x+1) / (6x2-7x+2) dx = 21 (6x+1) / ((3x-2)(2x-1)) dx

We can then use partial fractions to split this fraction into two that can be integrated, by using the variables A and B to represent expressions that would multiply together to make 6x+1 when put above the parts of the factoised denominator.

21 (6x+1) / ((3x-2)(2x-1)) dx = 21 A/(3x-2) + B/(2x-1)dx

Following the method of partial fractions, cross-multiply the fractions:

21 A/(3x-2) + B/(2x-1)dx = 21 A(2x-1)/(3x-2) + B(3x-2)/(2x-1) dx

                                        = 21 (2Ax – A + 3Bx – 2B)/((3x-2)(2x-1)) dx

Therefore, we can say 2Ax – A + 3Bx – 2B = 6x+1, and so 2Ax + 3Bx = 6x and -A -2B = 1. We can then solve these simultaneous equations by elimination or substiution and find that B = -8 and A = 15. Therefore:

21 (6x+1) / ((3x-2)(2x-1)) dx = 21 A/(3x-2) + B/(2x-1) dx

                                             = 21 15/(3x-2) + -8/(2x-1) dx

                                             = 21 15/(3x-2) dx - 21 8/(2x-1) dx

Using standard integrals, the integral of a fraction where the numerator is the derivative of the denominator is ln|denominator|. The fractions above are almost like this, if we rewrite them as:

21 15/(3x-2) dx - 21 8/(2x-1) dx = (5)21 3/(3x-2) dx - (4)21 2/(2x-1) dx

                                                   = 5[ln|3x-2|]21 – 4[ln|2x-1|]21

                                                   = 5(ln(4) – ln(1)) – 4(ln(3) – ln(1))

                                                   = 5ln(4) – 4ln(3)

To get this into the form required for the question, we can use the law of logs: log(ab) = b log(a):

5ln(4) – 4ln(3) = 5ln(22) – 4ln(3)

                       = 5(2)ln(2) – 4ln(3)

                       = 10ln(2) - 4ln(3)

Jed M. GCSE Biology tutor, A Level Biology tutor, GCSE Chemistry tuto...

8 months ago

Answered by Jed, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist


£24 /hr

Anahita G.

Degree: Maths and Economics (Bachelors) - York University

Subjects offered:Maths, Science+ 3 more

.TSA. Oxford.

“I am a maths and economics student at the University of York. I have always loved logical and analytical subjects, for example Maths and the Sciences. I also particularly enjoy economics as there are countless ways to analyse and conc...”

£20 /hr

Ciarán R.

Degree: MEng Civil Engineering with Project Management (Masters) - Leeds University

Subjects offered:Maths, Science+ 1 more


“Patient and adaptable Civil Engineering student at the University of Leeds. Contact me to discuss how I can best help you succeed.”

MyTutor guarantee

£20 /hr

Juris B.

Degree: Computer Science (Bachelors) - St. Andrews University

Subjects offered:Maths, Computing


“I am a Computer Science at the University of St. Andrews. Before that however, I was a pupil in a school in the North-East of Scotland. With the combined passion and availability of superb teachers - I was given an opportunity to exce...”

About the author

Jed M.

Currently unavailable: for regular students

Degree: Natural Sciences (Bachelors) - Exeter University

Subjects offered:Maths, Chemistry+ 1 more


“Hi! I'm a second year Natural Science student at the University of Exeter. I love all things science, and enjoy sharing what I know about it with others. For my GCSEs and A Levels, I found worked examples and practice questions are ke...”

You may also like...

Other A Level Maths questions

Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x

How to calculate the inverse of a 2x2 matrix

Differentiate y = (3x − 2)^4

Solve algebraically: 2x - 5y = 11, 3x + 2y = 7

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss