MYTUTOR SUBJECT ANSWERS

475 views

Find the value of 2∫1 (6x+1) / (6x2-7x+2) dx, expressing your answer in the form mln(2) + nln(3), where m and n are integers.

This fraction can’t be integrated easily, but if we split it using partial fractions, these will be easier to integrate. To do this, we need to factoise the denominator, as this will follow the method of partial fractions:

21 (6x+1) / (6x2-7x+2) dx = 21 (6x+1) / ((3x-2)(2x-1)) dx

We can then use partial fractions to split this fraction into two that can be integrated, by using the variables A and B to represent expressions that would multiply together to make 6x+1 when put above the parts of the factoised denominator.

21 (6x+1) / ((3x-2)(2x-1)) dx = 21 A/(3x-2) + B/(2x-1)dx

Following the method of partial fractions, cross-multiply the fractions:

21 A/(3x-2) + B/(2x-1)dx = 21 A(2x-1)/(3x-2) + B(3x-2)/(2x-1) dx

                                        = 21 (2Ax – A + 3Bx – 2B)/((3x-2)(2x-1)) dx

Therefore, we can say 2Ax – A + 3Bx – 2B = 6x+1, and so 2Ax + 3Bx = 6x and -A -2B = 1. We can then solve these simultaneous equations by elimination or substiution and find that B = -8 and A = 15. Therefore:

21 (6x+1) / ((3x-2)(2x-1)) dx = 21 A/(3x-2) + B/(2x-1) dx

                                             = 21 15/(3x-2) + -8/(2x-1) dx

                                             = 21 15/(3x-2) dx - 21 8/(2x-1) dx

Using standard integrals, the integral of a fraction where the numerator is the derivative of the denominator is ln|denominator|. The fractions above are almost like this, if we rewrite them as:

21 15/(3x-2) dx - 21 8/(2x-1) dx = (5)21 3/(3x-2) dx - (4)21 2/(2x-1) dx

                                                   = 5[ln|3x-2|]21 – 4[ln|2x-1|]21

                                                   = 5(ln(4) – ln(1)) – 4(ln(3) – ln(1))

                                                   = 5ln(4) – 4ln(3)

To get this into the form required for the question, we can use the law of logs: log(ab) = b log(a):

5ln(4) – 4ln(3) = 5ln(22) – 4ln(3)

                       = 5(2)ln(2) – 4ln(3)

                       = 10ln(2) - 4ln(3)

Jed M. GCSE Biology tutor, A Level Biology tutor, GCSE Chemistry tuto...

9 months ago

Answered by Jed, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

308 SUBJECT SPECIALISTS

£22 /hr

Lucy S.

Degree: Chemistry (Masters) - Durham University

Subjects offered:Maths, Chemistry

Maths
Chemistry

“Reading Chemistry at Durham University with expertise in Chemistry and Mathematics (A*A*) at GCSE/A-level”

£24 /hr

Ed W.

Degree: Medicine (Bachelors) - Edinburgh University

Subjects offered:Maths, Further Mathematics + 3 more

Maths
Further Mathematics
Chemistry
Biology
-Medical School Preparation-

“Hi! I'm Ed and I'm currently studying Medicine at the University of Edinburgh. I tutor at GCSE and A Level forBiology, Chemistry and Maths, and at GCSE level forFurther Maths. These are subjects I'm very comfortable in and enjoy. With ...”

£24 /hr

Hinsum W.

Degree: Medicine (Bachelors) - Edinburgh University

Subjects offered:Maths, Chemistry+ 3 more

Maths
Chemistry
Biology
-Personal Statements-
-Medical School Preparation-

“Hi, I'm a first year medic at Edinburgh. I've had 7 years' worth of experience teaching children Maths and English and have mentored lower school peers, so I'm bound to have an approach that will suit your learning style!”

About the author

Jed M.

Currently unavailable: for regular students

Degree: Natural Sciences (Bachelors) - Exeter University

Subjects offered:Maths, Chemistry+ 1 more

Maths
Chemistry
Biology

“Hi! I'm a second year Natural Science student at the University of Exeter. I love all things science, and enjoy sharing what I know about it with others. For my GCSEs and A Levels, I found worked examples and practice questions are ke...”

You may also like...

Other A Level Maths questions

Find the factors of x^3−7x−6

Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)

Using Trigonometric Identities prove that [(tan^2x)(cosecx)]/sinx=sec^2x

Differentiate expressions of form Ax^b where A and b are constants and x is a variable

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok