Contact Ben
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Ben

About me

Hello there! My names Ben, I'm a third year maths student at Durham University, but this year I'm actually studying at the University of Neuchâtel in Switzerland, attempting to do some maths in French! I'm originally from Sheffield, and next year I'll be returning to Durham to do a Masters :)

I have a real passion for Mathematics, and I'm really enthusiastic about helping and encouraging others to enjoy Maths, whether that's purely exam based or a more just-for-fun attitude. I've been quite successful academically, I was fortunate enough to achieve 14A* at GCSE, including an A* with Distinction at Further Maths, I got 3 A* in Maths, Further Maths and Physics at A Level and I got two AS levels at A grades in Music and French. I also sat some extra maths exams, I got a merit in AEA, a grade 1 in STEP II and grade 3 in STEP III (the latter meaning I just missed out on a Cambridge offer).

Although I do really enjoy studying, I'm not just an introverted bookworm! I play loads of sports and enjoying going out with friends a lot, I think I can be a good communicator and I don't take myself too seriously :) I've had a bit of tutoring experience so if you need a hand with Maths, I'd be more than happy to give you any help I can, and hopefully we can have a laugh and enjoy it along the way! :)

Subjects offered

SubjectLevelMy prices
Further Mathematics A Level £20 /hr
Maths A Level £20 /hr

Qualifications

QualificationLevelGrade
MathematicsA-LevelA*
Further MathematicsA-LevelA*
PhysicsA-LevelA*
STEP IIUni Admissions Test1
STEP IIIUni Admissions Test3
Disclosure and Barring Service

CRB/DBS Standard

No

CRB/DBS Enhanced

No

General Availability

Weeks availability
MonTueWedThuFriSatSun
Weeks availability
Before 12pm12pm - 5pmAfter 5pm
MONDAYMONDAY
TUESDAYTUESDAY
WEDNESDAYWEDNESDAY
THURSDAYTHURSDAY
FRIDAYFRIDAY
SATURDAYSATURDAY
SUNDAYSUNDAY

Please get in touch for more detailed availability

Ratings and reviews

5from 36 customer reviews

Sulayman (Student) November 27 2016

excellent lesson, explained very well.

Marcin (Parent) November 20 2016

My first tutorial with Ben. Excellent! Covered all I needed in C1 and now moving into S1.

Ben (Student) November 6 2016

Great, really helpful. Thanks!

Sulayman (Student) November 3 2016

Great lesson despite my internet problems.
See all reviews

Questions Ben has answered

how to find flight time/distance and greatest hight of projectiles?

a is acceleration, v is velocity, s is position vertically: a = - g v = u - gt (by integrating with respect to t and setting initial speed u as constant of integration) s = ut -gt2/2 + s0 (by integrating again and setting initial position s0 as constant of integration, although object if us...

is acceleration, v is velocity, is position

vertically:

a = - g

v = u - gt (by integrating with respect to t and setting initial speed u as constant of integration)

s = ut -gt2/2 + s0 (by integrating again and setting initial position s0 as constant of integration, although object if usually projected from origin so s= 0)

horizontally:

a = 0

v = u (constant velocity as acceleration is zero)

s = ut + s0 (again s0 usually 0)

so for an object projected from the origin at speed u at an angle θ from the horizontal, the initial speed in the x direction is ucos(θ) and usin(θ) in the y direction

thus sx = utcos(θ) and sy = utsin(θ) - gt2/2

flight time: this is the value of t when sy returns to zero

0 = utsin(θ) - gt2/2

so either t = 0 (at launch) or usin(θ) - gt/2 = 0

=> flight time is t = 2usin(θ)/g

flight distance: this is the value of sx when sy = 0

when sy = 0, t = 2usin(θ)/g 

so sx = utcos(θ) = 2u2sin(θ)cos(θ)/g = u2sin(2θ)/g (as sin(2θ) = 2sin(θ)cos(θ))

=> flight distance is x = u2sin(2θ)/g

greatest hight:

this is when sy is at a stationary point, ie. when dsy/dt = 0. This is also when vy = 0.

vy = usin(θ) - gt = 0

=> t = usin(θ)/g

=> sy = utsin(θ) - gt2/2 = u2sin2(θ)/g -  u2sin2(θ)/2g =  u2sin2(θ)/2g

=> greatest height is h = u2sin2(θ)/2g


:)

see more

1 year ago

302 views

What's the deal with Integration by Parts?

EXPLANATION: Integration by parts states that  ∫uv' dx = uv -  ∫u'v dx, where u & v are funcions of x and the notation u' means du/dx. to do integration by parts given an integral  ∫f(x) dx, it involves writing f(x) as f(x) = u(x)v'(x), and then following the formula by determining u' and v....

EXPLANATION:

Integration by parts states that  ∫uv' dx = uv -  ∫u'v dx, where u & v are funcions of x and the notation u' means du/dx.

to do integration by parts given an integral  ∫f(x) dx, it involves writing f(x) as f(x) = u(x)v'(x), and then following the formula by determining u' and v.

The whole point of IBP is that  ∫u'v dx is hopefully easier to integrate than ∫uv' dx.

eg(1) take  ∫ xsin(x) dx. This is quite hard to integrate directly, so we use integration by parts. When choosing which is u(x) and v'(x), remember that you will have to integrate v' and differentiate u later. Often what happens is when you differentiate u, u'(x) turns out to be 1, which leaves you with a simple integration.

so take u(x) =x and v'(x)=sin(x)

=>u' =1,  v = -cos(x) (don't worry about the "+c", it's included at the end)

so following the formula: ∫xsin(x)dx = -xcos(x) - ∫-cos(x) = xcos(x) + ∫cos(x)dx = xcos(x) + sin(x) + c

this is the final answer to that particular question, and we see that integration by parts gives us another method of integtration

METHOD:

1) for ∫ f(x) dx, choose suitable functions u(x) and v'(x) such that f(x) = u(x) * v'(x). 

2) determine u'(x) and v(x) by differentiating and integrating respectively

3) use the formula ∫uv' dx = uv -  ∫u'v dx to find the answer!

DERIVATION: (not usually necessary for exam but interesting to see!)

differentiation by parts works like this, for, u & v as functions of x,

where u' = du/dx etc.

d/dx(uv) = (uv)' = uv' + u'v (proof omitted)

if we integrate both sides wrt x

=> uv =  ∫uv' dx +  ∫u'v dx

=>  ∫uv' dx = uv -  ∫u'v dx

:)

see more

1 year ago

310 views
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Ben

Still comparing tutors?

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok