Michael L. A Level Chemistry tutor, GCSE Chemistry tutor, 13 plus  Ch...

Michael L.

Currently unavailable: for regular students

Degree: Chemistry (Masters) - Oxford, Magdalen College University

MyTutor guarantee

Contact Michael
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Michael

About me

Hi there!

My name's Michael and I'm currently studying Chemistry at the University of Oxford. It's a subject I have found fascinating given its huge variety of applications, and ability to provide solutions for so many issues faced by society today - from developing a sustainable energy source to discovering a new medicine. 

Although it's an exciting subject, it can also be very tricky at times! There are a vast range of topics to cover (sometimes seemingly unrelated!), which require good analytical, numerical, and descriptive skills

I'm here to work through those questions you might be struggling with, or topics you don't quite fully understand yet. 

Having tutored several students with different learning styles and helped them achieve top grades in their exams, my goal is to support you in finding the links and mastering the topics you are studying. I am also a textbook reviewer for the Oxford University Press, and look forward to coming up with alternative explanations and perspectives you might not have seen in a book, so you have a real understanding of what you are studying.

Effective tutoring is not about just giving you the answers, but instead developing a solid understanding and exam technique so you are fully confident facing any question thrown at you! At the same time, people only learn well when they are relaxed. I’ll plan each tutorial to ensure you leave with your questions answered, but also satisfied after an enjoyable session.

I am committed and passionate about supporting your learning, and working with you to improve your grades.

Look forward to hearing from you,

Michael

Subjects offered

SubjectLevelMy prices
Chemistry A Level £22 /hr
Extended Project Qualification A Level £22 /hr
Chemistry GCSE £20 /hr
Maths GCSE £20 /hr
-Personal Statements- Mentoring £22 /hr

Qualifications

QualificationLevelGrade
BiologyA-LevelA*
MathematicsA-LevelA*
EconomicsA-LevelA*
ChemistryA-LevelA
Further MathematicsA-LevelA
Extended Project Qualification (AS)A-LevelA*
Disclosure and Barring Service

CRB/DBS Standard

No

CRB/DBS Enhanced

08/09/2014

Currently unavailable: for regular students

Questions Michael has answered

Explain the physical properties of metals

Metals have a number of physical properties which make them useful to us in society, and which you will be familiar with from everyday experience. By considering the structure and bonding of metals which you have studied, we can explain these properties.  Metals are strong, with high melting ...

Metals have a number of physical properties which make them useful to us in society, and which you will be familiar with from everyday experience. By considering the structure and bonding of metals which you have studied, we can explain these properties. 

Metals are strong, with high melting and boiling points

Metals have high melting and boiling points as a result of the strong electrostatic attraction between the positively charged metal ions (we call positively charged ions cations), and sea of delocalised electrons. A great deal of heat energy is required to overcome this strong electrostatic attraction, which gives metals their high melting and boiling points. 

Metals conduct electricity

The delocalised electrons in the metal are free to move throughout the entire structure. When attached to an electrical power source, this means the metal can conduct electricity.  

Metals are workable

Metals have a crystal lattice, where the cations are arranged in a regular array. This means that when a large force is applied to a metal, the particles slide over each other (keeping their regular arrangement), and stay in their new positions. 

Metals are normally easy to shape since this regular packing allows ions to slide over each other. Metals are therefore said to be malleable (easily beaten into shape), and ductile (easily pulled out into wires).  

see more

1 year ago

271 views

How does a mass spectrometer work?

A mass spectrometer is an important analytical instrument which scientists can use to identify the amount and type of different chemicals in a substance. In this explanation I’ll go through how the mass spectrometer works. There are four stages in a mass spectrometer which we need to conside...

A mass spectrometer is an important analytical instrument which scientists can use to identify the amount and type of different chemicals in a substance. In this explanation I’ll go through how the mass spectrometer works.

There are four stages in a mass spectrometer which we need to consider, these are – ionisation, acceleration, deflection, and detection. Let’s go through these in order.

Ionisation

The sample needs to be vapourised first, before being passed into the ionisation chamber. Here, an electrically heated metal coil gives off a stream of electrons. The atoms or molecules in the sample are bombarded by this stream of electrons, and in some cases, the collision will knock an electron from the particle, resulting in a positively charged ion. Most of the ions formed have a +1 charge, as it is difficult to remove a second electron from an already positive ion.

Acceleration

The positively charged ions are repelled from the ionisation chamber (which is positively charged), and pass through negatively charged slits which focus and accelerate this into a beam.

Deflection

The stream of positively charged ions are then deflected by a magnetic field. The amount ions are deflected by depends on

-the mass of the ion (lighter ions will be deflected more than heavier ones)

-the charge of the ion (ions with a greater charge than +1 are deflected more)

We can consider these properties as a mass/charge ratio (m/z), where the mass of the ion is divided by its positive charge.

Detection

By varying the strength of the magnetic field, the different ion streams (after deflection) can be focused on the ion detector, in order of increasing mass/charge ratio (as the lightest ions would need to be deflected the less). When an ion hits the detector, the charge is neutralised, and this generates an electrical current. This current is proportional to the abundance of the ion, these are sent to a computer for analysis.

A mass spectrum is generated, which shows the different m/z values of ions present, and their relative abundance

Summary

Now you know has a mass spectrometer works – just remember the four stages in order – ionisation, acceleration, deflection, and detection. You should make sure to study a diagram of a mass spectrometer – a frequent question can be asking you to sketch a diagram, or describe how a particular step works, before then going on to interpret a mass spectrum. 

see more

1 year ago

629 views
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Michael

Still comparing tutors?

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok