Contact Venetia
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Venetia

About me

About Me: I study General Engineering at the University of Durham. I have always enjoyed the maths and science subjects, and hope to help students who also share my love for them too! I have experience in working with young pupils and tutoring students in their GCSEs and A Levels.

The Sessions: Before a session, you can let me know specific topics/areas you need help with, and I will prepare a session based on what you would like to cover. This can be starting from scratch, or usual revision and practice, or even exam questions and techniques! We will start by focussing on understanding the concepts, until you are confident enough to move on to answer exam questions, and we can learn to revise using visual aids, diagrams, mnemonics, brainstorms, and more!

Sign me up!: If you have any questions, send me a 'WebMail' or book a 'Meet the Tutor Session'. Please remember to tell me what exam board you're on and what you are struggling with.

Subjects offered

SubjectLevelMy prices
Further Mathematics A Level £22 /hr
Maths A Level £22 /hr
Further Mathematics GCSE £20 /hr
Maths GCSE £20 /hr
Maths 13 Plus £20 /hr
Maths 11 Plus £20 /hr

Qualifications

QualificationLevelGrade
MathematicsA-LevelA*
Further MathematicsA-LevelA
PhysicsA-LevelA
Disclosure and Barring Service

CRB/DBS Standard

No

CRB/DBS Enhanced

12/02/2013

General Availability

Weeks availability
MonTueWedThuFriSatSun
Weeks availability
Before 12pm12pm - 5pmAfter 5pm
MONDAYMONDAY
TUESDAYTUESDAY
WEDNESDAYWEDNESDAY
THURSDAYTHURSDAY
FRIDAYFRIDAY
SATURDAYSATURDAY
SUNDAYSUNDAY

Please get in touch for more detailed availability

Ratings and reviews

4.9from 34 customer reviews

Misbha (Parent) November 1 2016

Sobia is enjoying the sessions and the extra tutorial she says is helping her. I have seen working on her practice sheets and I also feel she is confident in saying what she is struggling with and ask for help. She has told me that she felt her exam went better this time than when she did it at school. The recap on some of the questions that she found difficult helped.

Jacqueline (Student) November 2 2016

Enjoyed my first tutorial. Went through past paper questions with Venetia.

Jacqueline (Student) November 30 2016

Jacqueline (Student) November 23 2016

See all reviews

Questions Venetia has answered

Simplify (3x^2-x-2)/(x^2-1)

This is an algebraic fraction. There is more than one way of solving this expression, but the simplest is to factorise both the top and the bottom quadratic expressions. Firstly we shall simplify the top expression, 3x^2-x-2. This means putting it in the form (ax + b)(cx + d) where a, b, c, a...

This is an algebraic fraction. There is more than one way of solving this expression, but the simplest is to factorise both the top and the bottom quadratic expressions.

Firstly we shall simplify the top expression, 3x^2-x-2. This means putting it in the form (ax + b)(cx + d) where a, b, c, and d are constants. 

Now, the only way to get 3x^2, you can see that a multipled by c must equal to 3. Therefore, (3x + b)(x + d). Now you can also see that b multiplied by d must be -2, but also, 3 multipled by d plus b multiplied by x must also be -1. Therefore it can be seen that b is 2, and d is -1. So now the top is (3x + 2)(x -1).

Next, we factorise the bottom of the fraction. At first glance, it looks like it is the simplest it can be. However, x^2 - 1 is actually the difference of two squares. This is (x + 1)(x - 1).

Now, the full factorised expression becomes (3x + 2)(x - 1)/(x + 1)(x - 1). As (x - 1) is on the top and the bottom, this is equal to 1, and can be cancelled out.

So now we have the answer! (3x + 2)/(x + 1)

see more

5 months ago

327 views

Solve 5x + 4 = 14 + x

This question is about rearranging the equation so that we have all the unknown values on one side, and all the known values on the other side. To start, we want to put all the x values on one side, and all the known constants on the other side. First, to get all the x values on one side, we ...

This question is about rearranging the equation so that we have all the unknown values on one side, and all the known values on the other side.

To start, we want to put all the x values on one side, and all the known constants on the other side.

First, to get all the x values on one side, we must subtract x from both sides of the equation (so that the equation is still correct, you must remember to do everything to both sides!). Therefore we get 4x + 4 = 14.

Now we want the known constants on the right hand side of the equation, so we subtract 4 from both sides. Now we get 4x = 10.

Now to find x on its own, we divide both sides of the equation by 4. So we get the answer to be x = 2.5!

see more

5 months ago

279 views

The equation of a curve is y = x^2 - 5x. Work out dy/dx

This is an example of differentiation. This can be useful in many concepts, one being finding the gradient of a line or curve at a certain point. To differentiate these types of equations, the rule is to multiply the front by the power and to take one from the power! y = x^2 - 5x We will tak...

This is an example of differentiation. This can be useful in many concepts, one being finding the gradient of a line or curve at a certain point. To differentiate these types of equations, the rule is to multiply the front by the power and to take one from the power!

y = x^2 - 5x

We will take each part separately. Starting with x^2. We multiply the front (which is 1) by the power (which is 2), therefore the constant at the front is now 2. We take one from the power, so 2 - 1 = 1. Therefore the derivative of x^2 is 2x.

Next we take 5x. Multiply the front (5) by the power (1), and take 1 from the power (1 - 1 = 0). Therefore the derivative of 5x is 5.

Now, we put it all together! dy/dy = 2x - 5!

see more

5 months ago

157 views
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Venetia

Still comparing tutors?

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok