Contact Gowan
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Gowan

About me

I am a Chemistry undegraduate at Durham University looking to tutor Chemistry A-level students or Maths and Chemistry at GCSE. I achieved A* grades in both Chemistry and Mathematics at A-level and want to help others attain the best they possibly can.

Hi I’m Gowan, a Chemistry (MChem) student at Durham University and have just finished my first year. I have always enjoyed learning about science and how it can be used to model and explain how the world around us works, such as how and why ice being less dense than water is essential for life. I completed A levels recently and so know many of the common pitfalls in understanding which people have.

Starting from the basics

I have always found that the best way of understanding something is from the basics. This especially applies in science whereby you will commonly have to build on and apply concepts that you have learned to unfamiliar situations.

I will strive in my tutorials to ensure that you understand the basics of a concept as with these solid foundations it becomes much easier to grasp more complicated ideas and we can then apply them in exam questions. Having studied chemistry for a year at a higher level I have deeper understanding of the subject than at a level and can explain concepts to you one to one in ways which have worked for me in the past.

Tailored around you

I know the areas which I struggled with understanding whilst studying for my exams. My tutorials however will be tailored around you. Of course I will explain the common pitfalls I encountered in grasping a concept but precisely which bits of the course we cover depends on what you feel you need. This may be a small area of the course or the whole syllabus.

Please let me know what you want to get out of the tutorials beforehand I can then plan around this to ensure you get the most value out of our time together.

What experience do I have to be a good tutor?

I was part of a mentoring scheme in college whereby I mentored an AS student in chemistry, making sure that they understood any particular ideas they were struggling with. I therefore have experience of explaining and teaching concepts. I have also been tutoring GCSE Chemistry through the schools programe on my tutorweb and so have experience of explaining the more challenging concepts at GCSE, such as chromatography, in a way you'll understand.

Exam boards

I studied OCR Chemistry B (Salters) at A level however if you study under another exam board please contact me, I’m sure the content will be very similar.

For GCSE much of the content covered will be universal. But please contact me with your exam board nonetheless so that I can look over the syllabus beforehand.

Subjects offered

SubjectLevelMy prices
Chemistry A Level £20 /hr
Chemistry GCSE £18 /hr
Maths GCSE £18 /hr
Physics GCSE £18 /hr

Qualifications

QualificationLevelGrade
ChemistryA-LevelA*
MathematicsA-LevelA*
PhysicsA-LevelA
Further MathematicsA-LevelB
Disclosure and Barring Service

CRB/DBS Standard

No

CRB/DBS Enhanced

15/09/2016

General Availability

Weeks availability
MonTueWedThuFriSatSun
Weeks availability
Before 12pm12pm - 5pmAfter 5pm
MONDAYMONDAY
TUESDAYTUESDAY
WEDNESDAYWEDNESDAY
THURSDAYTHURSDAY
FRIDAYFRIDAY
SATURDAYSATURDAY
SUNDAYSUNDAY

Please get in touch for more detailed availability

Ratings and reviews

5from 2 customer reviews

Lisa (Parent) November 26 2016

Lisa (Parent) November 19 2016

Questions Gowan has answered

What is entropy?

In chemical reactions entropy can be considered to be a measure of the number of ways which molecules and their quanta of energy can be arranged and is measured in J K-1 mol-1. For a process to occur spontaneously the total entropy must always increase (This is the second law of thermodynamic...

In chemical reactions entropy can be considered to be a measure of the number of ways which molecules and their quanta of energy can be arranged and is measured in J K-1 mol-1.

For a process to occur spontaneously the total entropy must always increase (This is the second law of thermodynamics). The entropy change of a reaction can be used to decide whether or not a reaction will occur spontaneously at a certain temperature. Bear in mind that this gives no indication of how quickly a reaction can occur only that it will; the reaction rate may be so low that the reaction isn’t noticeable/measurable.

In general solids have lower entropies than liquids which have lower entropies than gases. This can be explained very simply by looking at the molecular arrangements in each phase:

- In a solid the molecules are usually arranged in some form of lattice structure whereby movement of the molecules is severely restricted. This means that there are very few ways which the molecules can be arranged in the space and so the entropy is low.

- In a liquid the molecules are arranged randomly and are less restricted in their movements, this therefore means that they have higher entropies than solids as the molecules can be arranged more ways in the space.

- In gases the molecules are also randomly distributed in the space and are even more diffuse than in liquids with very little restriction to their movements in comparison. There are therefore more ways than in either solids or liquids for the molecules to be arranged in the space and so there entropies are generally the highest.

Example

You can use the above rules to make a very basic/simplified decision on whether a reaction will occur spontaneously just by looking at the relative phases of the reactants and products, for example in the reaction below:

A(l) + B(l) → 2C(g)

Two liquids react to give a gas, gases have higher entropies than liquids and so by the above rules the entropy change of this reaction will be positive and so it will occur spontaneously.

Considering the surroundings

So far we have considered the entropy change of the system (ΔSsystem = ΣSproducts - ΣSreactants). What hasn’t been considered here however is that entropy is also a measure of the arrangement of quanta of energy not just the distribution of molecules. The energy changes associated with a process must also therefore be factored in.

An equation you may have come across is ΔSsurroundings = -ΔH/T. This equation allows us to consider the entropy change of the surroundings during a process rather than just that of the system. It is calculated by dividing the negative of the enthalpy change of the process by the temperature.

- This formula basically allows us to consider the distribution of the quanta of energy rather than just that of the molecules. It thus explains why processes occur which would seem impossible by just considering the differences between the starting and final molecular distributions. An example of this may be the freezing of water at -10oC. The idea of a liquid spontaneously turning into a solid would seem impossible by just considering the molecular distribution. It is moving from a less ordered to a more ordered state, however by considering the total entropy change of the process it can be rationalised.

The total entropy change of a reaction is calculated by ΔStotal = ΔSsystem - ΔSsurroundings. Using this equation you can ascertain whether a reaction will occur spontaneously at a given temperature.

Example

An example of this is the freezing of water. This is a process, the temperature dependence of which we come across on a daily basis (water freezes at 0oC or 273K). This temperature dependence can be seen very clearly by looking at the total entropy change of the process (ΔStotal = ΔSsystem + ΔSsurroundings). The enthalpy change of water freezing is about ΔHo = -6010 J mol-1:

 This means that ΔSsurroundings = -ΔH/T = - (-6010 J mol-1 / T) = +6010 J mol-1 / T

 For water freezing ΔSsystem = -22.0 J K-1 mol-1.

Therefore ΔStotal = ΔSsystem + ΔSsurroundings = -22.0 J K-1 mol-1 + (+6010 J mol-1 / T)

= -22.0 J K-1 mol-1 + 6010 J mol-1 / T).

At 263K (-10oC) ΔStotal = -22.0 J K-1 mol-1 + (6010 J mol-1 / 263K)

= -22.0 J K-1 mol-1 + (6010 J mol-1 / 283K) = -22.0 J K-1 mol-1 + 22.9 J K-1 mol-1 = +0.9 J mol-1 K-1

The entropy change of the process is positive and so the process will occur spontaneously at this temperature (water does freeze at -10oC).

If we look at whether water will freeze at 283K (+10oC) however, we get a different story:

ΔStotal = ΔSsystem + ΔSsurroundings = -22.0 J K-1 mol-1 + (+6010 J mol-1 / T)

ΔStotal = -22.0 J K-1 mol-1 + (6010 J mol-1 / 283K)

= -22.0 J K-1 mol-1 + (6010 J mol-1 / 283K) = -22.0 J K-1 mol-1 + 21.2 J K-1 mol-1 = -0.8 J K-1 mol-1

The entropy change of the process of water freezing at 283K is negative, therefore this process will not occur spontaneously (water doesn’t freeze at +10oC).

As you can see, using entropy calculations we can rationalise the temperature at which processes happen, the freezing of water in this case. These calculations can also be used to find the minimum/threshold temperature at which a process will occur spontaneously (the temperature whereby ΔStotal = 0). This is the temperature at which the phase change takes place, the point of equilibrium between the phases.

At higher level…

If you study chemistry to a higher level you will find that these calculations are simplified. There are also entropy changes associated with the difference in the temperature that the process takes place (-/+10oC) and that at which the phase change takes place (0oC). The diagrams used for mapping out the total change in entropy for the process, taking these extra changes into account, are similar to the Hess cycles you may have already come across.

All data for the calculations of the entropy changes of water freezing used from Chemical Ideas Third Edition (2008) Pearson Education Limited 2008   ISBN 978 0 435631 49 9

see more

5 months ago

159 views
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Gowan

Still comparing tutors?

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok