Sam M. A Level Maths tutor, GCSE Maths tutor, A Level Further Mathema...

Sam M.

Currently unavailable: for regular students

Degree: Mathematics (Masters) - Warwick University

MyTutor guarantee

Contact Sam
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Sam

About me

Hi! I am a second year mathematics student at the University of Warwick, with a love for pure maths - in fact since 14 I've been set on becoming a mathematician. My intense fascination with this field not only motivated me to study new concepts on my own, but also led to my continued experimenting with simple concepts in order to gain a deep and intuitive understanding. I hope to pass this intuition on to all of my tutees, along with useful methods that I have picked up, and most importantly an engagement with the subject, which I feel is the best route to success.


Throughout my time studying for A levels I frequently helped other students to understand and grasp new concepts, often to an extent where I was an impromptu teaching assistant, and in one particular case I taught my A level class about the Taylor expansion. I also spent one term helping to teach a younger class mathematics, during which I learnt how to simplify ideas into understandable chunks. In year 13, I undertook a project in which I wrote a concise guide to a pure branch of mathematics, group theory. I had to write with an intriguing tone, and also make use of pedagogic features like in-depth examples and analogies. All of this experience is still fresh in my memory, and so I am well-placed to tutor GCSE and A Level material at a high standard.

Subjects offered

SubjectLevelMy prices
Further Mathematics A Level £20 /hr
Maths A Level £20 /hr
Further Mathematics GCSE £18 /hr
Maths GCSE £18 /hr

Qualifications

QualificationLevelGrade
MathematicsA-LevelA*
Further MathematicsA-LevelA*
PhysicsA-LevelA*
ChemistryA-LevelA
STEP IUni Admissions Test1
Disclosure and Barring Service

CRB/DBS Standard

No

CRB/DBS Enhanced

No

Currently unavailable: for regular students

General Availability

Weeks availability
MonTueWedThuFriSatSun
Weeks availability
Before 12pm12pm - 5pmAfter 5pm
MONDAYMONDAY
TUESDAYTUESDAY
WEDNESDAYWEDNESDAY
THURSDAYTHURSDAY
FRIDAYFRIDAY
SATURDAYSATURDAY
SUNDAYSUNDAY

Please get in touch for more detailed availability

Questions Sam has answered

How do you find the roots of a cubic equation?

Solving cubics is an interesting problem: while there is a formula which can find the roots of every cubic equation, it isn't taught and is not generally worth learning. Instead, exam questions will often give you a root of a cubic, and from that you are expected to fully factorise it, and hen...

Solving cubics is an interesting problem: while there is a formula which can find the roots of every cubic equation, it isn't taught and is not generally worth learning. Instead, exam questions will often give you a root of a cubic, and from that you are expected to fully factorise it, and hence find the roots. Let's look at an example!

Q: Given that -2 is a root of 2x^3 + 9x^2 - 2x - 24, find all roots.

A: Firstly, we know by the factor theorem that if a is a root of a polynomial (a cubic, for instance), then (x - a) will be a factor of that polynomial. Therefore, we know that (x + 2) is a factor of 2x^3 + 9x^2 - 2x - 24. To get the other roots, we could use polynomial division, but there is a way which is quicker and less error-prone. Write this as such:

2x^3 + 9x^2 - 2x - 24 = (x + 2)(                   )

Now, we know that in the brackets there will be an x^2 term, an x term and a constant. What can the x^2 term be? Well it must be 2x^2, because when we multiply out the brackets, we need to end up with 2x^3, and the only way we get a cubic term here is by multiplying the x by some x^2 term.

2x^3 + 9x^2 - 2x - 24 = (x + 2)(2x^2              )

Similarly, the constant term must be -12, because we need a -24 after multiplying out the brackets, and the only way to get a constant term here is by multiplying the two constant terms.

2x^3 + 9x^2 - 2x - 24 = (x + 2)(2x^2        - 12)

Now the x term. if we start to multiply out, we see that we have 2x^3 + 4x^2 - 12x - 24. We have 4x^2, which we got from multiplying by 2x^2, but we need 9x^2, so we have to add on 5 more. The other way to get an x^2 term is to multiply two x terms. So our x term must be 5x, so that when we multiply it by the x in the (x + 2), we end up with the extra 5x^2.

2x^3 + 9x^2 - 2x - 24 = (x + 2)(2x^2 + 5x - 12)

Finally, we just have to factorise the quadratic in the bracket. Using inspection, or  failing that the quadratic formula (though this is more prone to error), we find that:

2x^3 + 9x^2 - 2x - 24 = (x + 2)(2x - 3)(x + 4)

Applying the factor theorem again, we find that the roots are -4, -2 and 3/2.

see more

4 months ago

177 views
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Sam

Still comparing tutors?

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok