Philippa M. A Level Maths tutor, GCSE Maths tutor, 13 Plus  Maths tut...

Philippa M.

Currently unavailable: for regular students

Degree: Maths and Physics (Masters) - Manchester University

MyTutor guarantee

Contact Philippa
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Philippa

About me

About Me

My name is Philippa, and I'm a third year Maths and Physics student at the University of Manchester. So many disciplines rely on maths knowledge when you get to an advanced study level, and I've met countless people who feel that 'not having a head for maths' has held them back - I want to make sure that doesn't happen to you! I have a huge passion for maths and sciences; I am always delighted to help students who struggle to enjoy these subjects just because they may not immediately grasp the numerical concepts behind them. I fully understand how intimidating these exams can be - that's why I'm here to help you get your head round them.

My Teaching

I despise rote learning. In maths and sciences especially, a solid understanding will take you further that being able to memorise a textbook verbatim. Once I know what areas you are struggling with, we will first focus on fostering a solid understanding of the material, and then focus on exam technique. My aim is to ensure you understand the topics as well as I do, and during our sessions I hope that some of my enthusiasm will rub off!

Knowing the material is only half the battle, and we will work not just on getting the answers, but also on the methods and techniques that examiners are looking for. For maths-based subjects, only a fraction of the question marks are awarded for bottom line answers; we will also be spending time on how to set up questions and lay out your answers in a way that will impress the examiner and hit all those mark scheme points. 

If you are interested or want to know more, get in contact and drop me a message! Let me know your exam board, what papers you are taking and the areas that you're struggling with and I will be happy to help you out. 

Subjects offered

SubjectLevelMy prices
Maths A Level £20 /hr
Physics A Level £20 /hr
Chemistry GCSE £18 /hr
Maths GCSE £18 /hr
Physics GCSE £18 /hr
Maths 13 Plus £18 /hr

Qualifications

QualificationLevelGrade
MathsA-LevelA*
Further MathsA-LevelA*
PhysicsA-LevelA*
ChemistryA-LevelA
Disclosure and Barring Service

CRB/DBS Standard

No

CRB/DBS Enhanced

No

Currently unavailable: for regular students

General Availability

Weeks availability
MonTueWedThuFriSatSun
Weeks availability
Before 12pm12pm - 5pmAfter 5pm
MONDAYMONDAY
TUESDAYTUESDAY
WEDNESDAYWEDNESDAY
THURSDAYTHURSDAY
FRIDAYFRIDAY
SATURDAYSATURDAY
SUNDAYSUNDAY

Please get in touch for more detailed availability

Questions Philippa has answered

A student is measuring the acceleration due to gravity, g. They drop a piece of card from rest, from a vertical height of 0.75m above a light gate. The light gate measures the card's speed as it passes to be 3.84 m/s. Calculate an estimate for g.

This question is simply a matter of finding and applying the correct equation of motion. First, draw a diagram - even if the situation in the questions seems really simple, it's always useful to draw a diagram.  The card is being dropped from rest; as the only force acting on it is gravity, ...

This question is simply a matter of finding and applying the correct equation of motion.

First, draw a diagram - even if the situation in the questions seems really simple, it's always useful to draw a diagram. 

The card is being dropped from rest; as the only force acting on it is gravity, the acceleration - and therefore final velocity - will be purely vertical. The question also specifies that the card is dropped from a given vertical distance - this is all good news as we will not have to resolve anything into horizontal and vertical components.

Now we write down all the quantities that we might find in an equation of motion that relate to the question.

s = distance travelled = 0.75m

u = initial velocity = 0 m/s

v = final velocity = 3.84 m/s

a = acceleration = g, to be found

t = time elapsed. We are not given t, nor are we at any point required to find it - so as far as we are concerned t is irrelevant!

The only quantities that matter are s, u, v and a; so we just find the equation of motion that includes these four, and substitute our values in.

From either memory or the formula sheet, we have the equation:

v- u= 2as.

Simply rearrange in terms of the value we are trying to find, in this case a, and plug in the numbers to get our estimate for g,

a = 9.83 m/s2.

You might notice this is actually slightly different from the accepted value of 9.81 - this is fine! The exam board will rarely have you calculate a known constant that comes out exactly right; this is to prevent you just looking up the answer in the formula booklet. As our answer is very close, we can be confident that the calculations are correct. 

see more

2 weeks ago

19 views

You put £800 in a bank account, which earns you 3.5% compound interest per year. How much interest would you have earned after seven years?

We start with £800 in the bank. As we are earning compound interest, it means that each year we get 3.5% of the original £800, plus 3.5% ofany interest that has already been earned. So, at the end of the year, you will have 1.035 x (however much money was in the account at the start of the yea...

We start with £800 in the bank. As we are earning compound interest, it means that each year we get 3.5% of the original £800, plus 3.5% of any interest that has already been earned. So, at the end of the year, you will have

1.035 x (however much money was in the account at the start of the year).

Let's start with year 1. You have £800 at the start, and at the end you have 

£800 x 1.035 = £828.

Now let's think about year 2. You start with £828, and end with

£828 x 1.035 = £856.98

We can also write it like this:

Money at end of year 2 = £828 x 1.035 = £800 x 1.035 x 1.035

Do you see how for each year we earn interest, we just multiply the original £800 by another 1.035?

So, after n years, the total in the account is:

£800 x 1.035n

This makes it easy to work out the total after 7 years, which is just:

£800 x 1.035=  £1017.82 (rounded to the nearest penny)

To find the interest earned, just subtract the original amount (in this case £800), and we get our answer:

£1017.82 - £800 = £217.82 interest

see more

2 weeks ago

15 views
Send a message

All contact details will be kept confidential.

To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Philippa

Still comparing tutors?

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok