PremiumSamuel C. A Level Physics tutor, A Level Maths tutor, A Level Further...

Samuel C.

£24 - £26 /hr

Currently unavailable: for new students

Studying: Physics (Bachelors) - Durham University

5.0
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.

88 reviews| 168 completed tutorials

Contact Samuel

About me

My name is Sam Crawford, I recently graduated with a First Class BSc in Mathematics and Physics from Durham University, and have a Masters offer for Mathematics at the University of Cambridge. I love tutoring people, so much so in fact that I taught my friend AS-Level Maths over the summer once just for fun (he did offer to pay me at one point) as well as spending a year as a voluntary teaching assistant in a maths class at my secondary school. I tend to be the go-to guy at university if someone has a problem with their homework; people often come and find me to help them out. I received 4 A*'s at A-Level in Maths, Further Maths, Physics and Chemistry as well as the gold award in both the Physics and Chemistry Olympiads, so please come to me if you would like some help with those, they are great fun! I did some of the more obscure modules in Further Maths: FP2, FP3, and FP4 (AQA), as well as studying some of the M3 module just out of curiosity.

My name is Sam Crawford, I recently graduated with a First Class BSc in Mathematics and Physics from Durham University, and have a Masters offer for Mathematics at the University of Cambridge. I love tutoring people, so much so in fact that I taught my friend AS-Level Maths over the summer once just for fun (he did offer to pay me at one point) as well as spending a year as a voluntary teaching assistant in a maths class at my secondary school. I tend to be the go-to guy at university if someone has a problem with their homework; people often come and find me to help them out. I received 4 A*'s at A-Level in Maths, Further Maths, Physics and Chemistry as well as the gold award in both the Physics and Chemistry Olympiads, so please come to me if you would like some help with those, they are great fun! I did some of the more obscure modules in Further Maths: FP2, FP3, and FP4 (AQA), as well as studying some of the M3 module just out of curiosity.

Show more

About my sessions

Unless I'm introducing a student to a topic for the first time I have found that starting by working through past exam questions together is by far the most efficient method. This does not mean I'll sit there and watch you fill out past papers, far from it! The questions merely act as 'jumping off points' as they allow me to quickly see the key piece of understanding the student might be missing. We then explore this gap as I present a variety of different perspectives that might help the student plug it. Every student is different, and for every issue there will be one explanation that works best for you. My job then is simply to find that explanation and express it to you clearly (and enthusiastically, I live and breathe my subject, as you'll soon find out!) I also like to encourage students to tackle set problems outside of the tutorials, and message me with any quick questions they may have. The tutoring does not have to be confined to the 60 minute sessions! I can assess work to give feedback on during sessions, or set more work hand picked for each student. Whatever works for you!

Unless I'm introducing a student to a topic for the first time I have found that starting by working through past exam questions together is by far the most efficient method. This does not mean I'll sit there and watch you fill out past papers, far from it! The questions merely act as 'jumping off points' as they allow me to quickly see the key piece of understanding the student might be missing. We then explore this gap as I present a variety of different perspectives that might help the student plug it. Every student is different, and for every issue there will be one explanation that works best for you. My job then is simply to find that explanation and express it to you clearly (and enthusiastically, I live and breathe my subject, as you'll soon find out!) I also like to encourage students to tackle set problems outside of the tutorials, and message me with any quick questions they may have. The tutoring does not have to be confined to the 60 minute sessions! I can assess work to give feedback on during sessions, or set more work hand picked for each student. Whatever works for you!

Show more

No DBS Icon

No DBS Check

Ratings & Reviews

5from 88 customer reviews
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.

Dom (Parent)

Samuel helped our son tame this new very hyper-challenging Physics A-Level. He got an A and the patient rehearsal and explanations of Samuel were a precious, long lasting support. Thank you

Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.

James (Student)

May 20 2017

Very good explanations on functions.

Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.

James (Student)

May 13 2017

Really helped me understand the fundamental aspects of C1

Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.
Star 1 Created with Sketch.

Cassandra (Parent)

May 10 2017

Helped my daughter with FP1. Very useful. Many thanks.

Show more reviews

Qualifications

SubjectQualificationGrade
PhysicsA-level (A2)A*
ChemistryA-level (A2)A*
MathematicsA-level (A2)A*
Further MathematicsA-level (A2)A*
Mathematics and PhysicsDegree (Bachelors)1ST

General Availability

Before 12pm12pm - 5pmAfter 5pm
mondays
tuesdays
wednesdays
thursdays
fridays
saturdays
sundays

Subjects offered

SubjectQualificationPrices
ChemistryA Level£26 /hr
Further MathematicsA Level£26 /hr
MathsA Level£26 /hr
PhysicsA Level£26 /hr
ChemistryGCSE£24 /hr
MathsGCSE£24 /hr
PhysicsGCSE£24 /hr

Questions Samuel has answered

How do I do a proof by induction?

For this explanation we will use the following example from a 2013 exam paper:

   If u1= 2 and un+1=(5un-3)/(3un-1), then prove that un=(3n+1)/(3n-1) for all n>=1

The first step of any proof by induction is to make the assumption that what we want to prove is true for a particular value n = k:

  Assume there exists k such that uk=(3k+1)/(3k-1)

We must then prove that it is also true for n = (k+1), we start by finding uk+1 using the original formula:

  uk+1 = (5uk-3)/(3uk-1) = (5*(3k+1)/(3k-1) - 3)/(3*(3k+1)/(3k-1) - 1) = ... = (3k+4)/(3k+2)

We now want to write this in terms of k+1, in this case it is fairly straightforward but other times it may be harder to see:

  uk+1 = (3k+4)/(3k+2) = (3(k+1) - 3 + 4)/(3(k+1) - 3 +2) = (3(k+1)+1)/(3(k+1)-1)

When written in terms of k+1, uk+1 should now be in the form that we want to prove for unor a form that can be rearranged into that one. There is still one step left however which is CRUCIAL for this to be a proper proof by induction. We have to prove this is true for a certain value of n, in this case n = 1:

   u= 2 = (3*1+1)/(3*1-1) therefore the assumption is true for n = 1. It is therefore true for n = 1, 2, 3, ...

This last step is usually very simple but can often be overlooked so make sure to include it!

For this explanation we will use the following example from a 2013 exam paper:

   If u1= 2 and un+1=(5un-3)/(3un-1), then prove that un=(3n+1)/(3n-1) for all n>=1

The first step of any proof by induction is to make the assumption that what we want to prove is true for a particular value n = k:

  Assume there exists k such that uk=(3k+1)/(3k-1)

We must then prove that it is also true for n = (k+1), we start by finding uk+1 using the original formula:

  uk+1 = (5uk-3)/(3uk-1) = (5*(3k+1)/(3k-1) - 3)/(3*(3k+1)/(3k-1) - 1) = ... = (3k+4)/(3k+2)

We now want to write this in terms of k+1, in this case it is fairly straightforward but other times it may be harder to see:

  uk+1 = (3k+4)/(3k+2) = (3(k+1) - 3 + 4)/(3(k+1) - 3 +2) = (3(k+1)+1)/(3(k+1)-1)

When written in terms of k+1, uk+1 should now be in the form that we want to prove for unor a form that can be rearranged into that one. There is still one step left however which is CRUCIAL for this to be a proper proof by induction. We have to prove this is true for a certain value of n, in this case n = 1:

   u= 2 = (3*1+1)/(3*1-1) therefore the assumption is true for n = 1. It is therefore true for n = 1, 2, 3, ...

This last step is usually very simple but can often be overlooked so make sure to include it!

Show more

3 years ago

867 views

How do I find the integral ∫(ln(x))^2dx ?

This problem is all about using integration by parts, so let's start by quoting the formula for integration by parts:

    ∫u*(dv/dx)dx = uv - ∫v*(du/dx)dx

To get the integral we want on the left hand side we can use the subtitutions u = dv/dx = ln(x). This means that we will have to find ∫ln(x)dx, this is also done using integration by parts:

To find ∫ln(x)dx we can use the substitutions u = ln(x) and dv/dx = 1. Using the formula above will then give us:

   ∫ln(x)*1dx = ln(x)*x - ∫x*(1/x)dx

 = xln(x) - ∫dx = xln(x) - x = x(ln(x)-1)

Using this we can now use our original substitutions in the formula to get:

   ∫ln(x)*ln(x)dx = ln(x)*x(ln(x)-1) - ∫x(ln(x)-1)*(1/x)dx

 = xln(x)*(ln(x)-1) - ∫(ln(x)-1)dx 

 = xln(x)*(ln(x)-1) - x(ln(x)-1) + x + c 

Now we just have to tidy this up to get our final answer:

  ∫(ln(x))^2dx = x[(ln(x)+1)^2 + 1] + c

This problem is all about using integration by parts, so let's start by quoting the formula for integration by parts:

    ∫u*(dv/dx)dx = uv - ∫v*(du/dx)dx

To get the integral we want on the left hand side we can use the subtitutions u = dv/dx = ln(x). This means that we will have to find ∫ln(x)dx, this is also done using integration by parts:

To find ∫ln(x)dx we can use the substitutions u = ln(x) and dv/dx = 1. Using the formula above will then give us:

   ∫ln(x)*1dx = ln(x)*x - ∫x*(1/x)dx

 = xln(x) - ∫dx = xln(x) - x = x(ln(x)-1)

Using this we can now use our original substitutions in the formula to get:

   ∫ln(x)*ln(x)dx = ln(x)*x(ln(x)-1) - ∫x(ln(x)-1)*(1/x)dx

 = xln(x)*(ln(x)-1) - ∫(ln(x)-1)dx 

 = xln(x)*(ln(x)-1) - x(ln(x)-1) + x + c 

Now we just have to tidy this up to get our final answer:

  ∫(ln(x))^2dx = x[(ln(x)+1)^2 + 1] + c

Show more

3 years ago

1401 views

Arrange a free video meeting


To give you a few options, we can ask three similar tutors to get in touch. More info.

Contact Samuel

How do we connect with a tutor?

Where are they based?

How much does tuition cost?

How do tutorials work?

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok