Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.

Begin with a diagram of the system, and definition of directions. Vertically up and clockwise rotations are positive. It must be recalled that in SHM force is proportional to displacement from equqilibrium. The key assumptions to make are: 

  1. the string is taught throughout the motion of the pendulum, 

  2. the string doesn't break thtroughout the motion of the pendulum,

  3. the initial angle of displacement from vertical is small, 

  4. there is no drag.

Take the angular displacement from veritcal to be x, and look at the forces on the particle. Assumptions 1) and 2) imply that there is no motion parrallel to the string, and hence the tension in the string must be equal magnitude to the weight of the mass parallel to the string. Hence the resultant force must act perpendicular to the direction of the string. Using trigonometry, this force (F) is: -mgsin(x). where g is the acceleration due to gravity. Now, in the small angle limit sin(x) ~ x so F=-mgsin(x) becomes F~-mgx. Since x is displacement from equilibrium, the system undergoes SHM.

LK
Answered by Luke K. Physics tutor

12378 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would our Sun's luminosity change if we increased its temperature 3 times?


A ball is thrown at speed u = 10.0 m/s at an angle of 30.0 degrees to the ground at height, s = 0. How far does the ball travel horizontally from its starting position? (Ignore air resistance and taking g = 9.81 m/s^2)


A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


How does the strong nuclear force between two nucleons varies with separation of the nucleons. Please detail the range over which the force acts.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning