Why does a feather fall at the same rate as a hammer on the Moon?

To calculate an object's weight, we have weight = mass * gravitational field strength (W = mg). From this, we see that an object with a greater mass (e.g. a hammer compared with a feather) has a greater weight, and since weight is the force that causes falling, we might expect that it will fall faster.
However, this does not happen. If we want to work out the acceleration of an object, we use Newton's second law, force = mass * acceleration (F = ma). Since weight is the force acting on the hammer or feather, we can equate our expression for the weight, mg, to ma:
ma = mg
We can then divide both sides of this equation by m, yielding
a = g
And therefore, the acceleration a doesn't depend on m, the object's mass. For this reason, a hammer and a feather will fall with the same acceleration on the Moon, as long as there are no other forces.

JT
Answered by Joel T. Physics tutor

9594 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A given star has a peak emission wavelength of 60nm, lies 7.10*10^19m away and the intensity of its electromagnetic radiation reaching the Earth is 3.33*10^-8Wm^-2. Calculate the star's diameter


A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?


An electron moving at 1000 m/s annihilates with a stationary positron. What is the frequency of the single photon produced?


Explain why excited atoms only emit certain frequencies of radiation after an electron collides with the atom


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning