How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?

Kepler's 3rd law states that the cube of the radius, r from a planet is directly proportional to the square of the orbital period around it, T: r3 ∝ T2 (this is the result we want!)
We know Newton's Law of gravitiation: Fg = GMm/r2 We also know the equations of circular motion, and that Fc = mv2/r The key is that in a circular orbit, the centripetal force Fc is provided by the gravitational force FgSo we can equate Fc = Fg=> mv2/r = GMm/r2 We can see m cancels on both sides:v2/r = GM/r2 Remember in circular motion v depends on r and T:v = ω r and ω = 2π/T so v = 2πr/Tsubstituting v = 2πr/T back into equation 1:4π2r/T2 = GM/r2Note how m cancels out and v is substituted with r and T terms: so the mass/velocity of the satellite don't matter, and the result is general for ANY orbiting body!Rearrange so the constants are on one side, and r and T terms on the other:r3/T2 = GM/4π2or, r3 = k T2 where the constant k = GM/4π2
=> r3 ∝ T2 for any planet ...Kepler's 3rd law!

GC
Answered by Greta C. Physics tutor

7024 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What height do geostationary satellites orbit above the Earths surface?


An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.


Why is the refractive index of water bigger than that of air?


What are the differences between standing waves and progressive waves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning