How does energy flow from voltage source to resistor in a simple DC circuit?

Let us consider a simple dc circuit consisting of a battery and a resistor connected by ideal wires. As we know, current starts to flow thorugh the resistor and heat is generated as a result of this current flow. We need to determine how this energy is transferred from the voltage source to the resistor. The answer, suprisingly, is that the ideal wires connecting the battery to the resistor carry no energy at all. Most of the energy flows around the ideal wires. This is because the electric field inside the wires is zero and according to the Poynting theorem, no energy can flow if the electric field is zero in any given region of space. However, a radial electric field exists outside the current carrying wires and hence energy flows parallel to the wires and gets converted to heat in the resistor. 

Answered by Sree Harsha N. Physics tutor

2242 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

From what height, h, should a rail-cart fall to complete a loop-the-loop of radius r without falling off a the track? Assume the track on which the rail-cart travels is smooth and express h in terms of r.


What is natural frequency and how is it associated with resonance?


What is the photoelectric effect and how does it provide evidence for the quantisation of electromagnetic radiation?


Sphere A (mass m), moving with speed 3v, collides with sphere B (mass 2m) which is moving in the opposite direction with speed v. The two spheres then combine, calculate the resulting velocity of the combined spheres.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy