Prove that tan^2(x)=1/(cos^2(x))-1

tan^2(x)=1/(cos^2(x))-1 Left hand side of the equation (LHS)=tan^2(x) Use the identity tan(x)=sin(x)/cos(x) and substitute it into the LHS LHS=sin^2(x)/cos^2(x) Use the identity sin^2(x)+cos^2(x)=1 and rearrange to make sin^2(x) the subject sin^2(x)=1-cos^2(x) Substitute this into the LHS: sin^2(x)/cos^2(x)=1-cos^2(x)/cos^2(x) Simplify this to give the RHS of the equation given:1-cos^2(x)/cos^2(x)=1/(cos^2(x))-1 Therefore the LHS=RHS

PA
Answered by Phoebe A. Further Mathematics tutor

2459 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


Find the coordinates of the minimum point of the function y=(x-5)(2x-2)


Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning