Prove that tan^2(x)=1/(cos^2(x))-1

tan^2(x)=1/(cos^2(x))-1 Left hand side of the equation (LHS)=tan^2(x) Use the identity tan(x)=sin(x)/cos(x) and substitute it into the LHS LHS=sin^2(x)/cos^2(x) Use the identity sin^2(x)+cos^2(x)=1 and rearrange to make sin^2(x) the subject sin^2(x)=1-cos^2(x) Substitute this into the LHS: sin^2(x)/cos^2(x)=1-cos^2(x)/cos^2(x) Simplify this to give the RHS of the equation given:1-cos^2(x)/cos^2(x)=1/(cos^2(x))-1 Therefore the LHS=RHS

PA
Answered by Phoebe A. Further Mathematics tutor

2107 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How can I show that the lines between sets of points are perpendicular?


Factorise the following quadratic x^2 - 8 + 16


How to solve the inequality 1 - 2(x - 3) > 4x


How can I find the equation of a straight line on a graph?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences