Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)

We first find the complementary function by guessing y=e^(kx). Substituting this into the equation d^2y/dx^2 + (3/2)dy/dx + y = 0. we find k^2 + (3/2)k + 1 = 0 which factorises into (k+2)(k+1/2). So our complementary function is y= Ae^(-2x) + Be^(-x/2). Now we find any particular integral by guessing y = Le^(-4x). Substituting this in to the equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x) we find that L(16e^(-4x) - 4e^(-4x) + e^(-4x)) = 22e^(-4x) and L=2. So the solution to the differential equation is y= Ae^(-2x) + Be^(-x/2) + 2e^(-4x) //

NE
Answered by Nathan E. Further Mathematics tutor

7101 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


Take quadratic equation x^2-6x+14=0 and its solutions a and b. What is a/b+b/a?


How do I apply mathematical induction to answer questions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning