Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)

We first find the complementary function by guessing y=e^(kx). Substituting this into the equation d^2y/dx^2 + (3/2)dy/dx + y = 0. we find k^2 + (3/2)k + 1 = 0 which factorises into (k+2)(k+1/2). So our complementary function is y= Ae^(-2x) + Be^(-x/2). Now we find any particular integral by guessing y = Le^(-4x). Substituting this in to the equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x) we find that L(16e^(-4x) - 4e^(-4x) + e^(-4x)) = 22e^(-4x) and L=2. So the solution to the differential equation is y= Ae^(-2x) + Be^(-x/2) + 2e^(-4x) //

NE
Answered by Nathan E. Further Mathematics tutor

6768 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


How to determine the rank of a matrix?


Find the determinant of a 3x3 square matrix


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences