Describe the energy changes in the 4 stages of a bungee jump - at the top, in freefall, when the cord is stretching and at the bottom

There are 3 forms of energy during a bungee jump, kinetic (KE = 0.5mv^2), gravitational potential (GPE = mgh) and elastic potential (EPE = 0.5kx^2). Energy is conserved throughout, and it's assumed none is lost as heat due to air resistance. At the top the rope is slack, velocity = 0 and so all of the energy is in the form of gravitational potential. In freefall, the rope is still slack so EPE = 0. KE is increasing with the acceleration due to gravity and GPE is decreasing as height reduces. As the cord stretches EPE increases. KE will continue to rise briefly before falling as velocity could continue to increase if the acceleration due to gravity is initially greater than the acceleration from the bungee cord. GPE will continue to decrease as the height falls. Finally at the bottom GPE is at a minimum, KE = 0 and EPE is at a maximum.

The key thing throughout this problem is to take the variable out of each equation (v for KE, x for EPE and h for GPE) and thing about their magnitude at each point relative to the other points.

FE
Answered by Felix E. Physics tutor

30652 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Whats the effective resistance in a parallel and series circuit with a cell and two 12 ohms resistors ?


A basketball player throws his ball vertically upwards with an initial speed of v=40 m/s. Ignore air resistance. What is the speed of the ball at half of the maximum height?


You have a layer of glass with a refractive index of 1.5 and the glass is surrounded by air. A light ray shines into the glass and Total Internal Reflection occurs at the glass-air boundary. What is the critical angle?


A positively charged particle enters a magnetic field oriented perpendicular to its direction of motion. Does the particle: A) Change its velocity, B) Change its speed, C) Accelerate in the direction of the magnetic field.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences