An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?

To begin with, we need to draw a graph with all of the forces acting on a body.

From that, we can see that the net force Fnet = Fg - Fc , where Fg is gravitational force and Fc is centripetal force acting on a body.

Due to the fact, that the object is in a stable orbit around the Earth, Fnet = 0 N and Fg = Fc -> GmM/(R+h)^2=mv^2/(R+h) -> GM/(R+h)=v^2 and v = (GM/(R+h))^0.5

Inserting values for Earth’s mass (M=5.972×10^24 kg) , and radius (R=6 371 km), we get that v=7785.9 m/s

To find the orbital period, we use the formula T = 2 * pi * (R+h) / v = 5302.8 s

Answered by Domas A. Physics tutor

1585 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?


What is the minimum frequency of electromagnetic radiation needed for a photon to ionise an atom of sodium? ( An atom of sodium has an ionisation energy of 5.15 eV.)


How can an object be accelerating if it does not change in speed?


Why is 0°C ice more effective at cooling a drink than 0°C water of the same mass?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy