An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?

To begin with, we need to draw a graph with all of the forces acting on a body.

From that, we can see that the net force Fnet = Fg - Fc , where Fg is gravitational force and Fc is centripetal force acting on a body.

Due to the fact, that the object is in a stable orbit around the Earth, Fnet = 0 N and Fg = Fc -> GmM/(R+h)^2=mv^2/(R+h) -> GM/(R+h)=v^2 and v = (GM/(R+h))^0.5

Inserting values for Earth’s mass (M=5.972×10^24 kg) , and radius (R=6 371 km), we get that v=7785.9 m/s

To find the orbital period, we use the formula T = 2 * pi * (R+h) / v = 5302.8 s

DA
Answered by Domas A. Physics tutor

3210 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What distance is one Parsec


Define the work function of a metal


If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.


If the force between two point charges of charge 'Q1' and 'Q2' which are a distance 'r' apart is 'F' then what would the force be if the charge of 'Q1' is tripled and the distance between them doubled?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning