A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.

In order to find the velocity, we need to know the distance covered by the ball in a known length of time. We are given the distance, 5.0 m, therefore we need to compute the time of flight of the ball. This will be the time taken by the ball to fall from the height of 1.2 m to the ground. Note that the initial velocity given to the ball is horizontal, this means that it has no vertical components and it does not affect the vertical fall of the ball. This simplifies the problem since we can find the time of flight simply calculating the time that it takes for a stationary object to fall from 1.2 m. We know the formula for the displacement y of a body experiencing constant acceleration: y= 1/2g(t^2) where g is the gravitational acceleration constant. We rearrange the equation and substitute the values of g and y= 1.2m to find t= 0.5s (note that we must quote our result with the same number of significant figures as the data given in the problem). Hence the ball traveled 5.0m in 0.5s, so we find the magnitude of the horizontal velocity, v= 10 m/s.

FS
Answered by Francesco S. Physics tutor

11388 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe how standing waves are formed and explain why nodes and antinodes are formed.


A small ball of mass 150 g is placed at a height of 20cm above the ground on an incline of 35°. It is released and allowed to roll down the slope; what will be the ball's speed when it reaches the ground? Assume friction and air resistance can be ignored.


On the line of centres between the Earth and the Moon, there is a point where the net gravitational force is zero. Given that the distance between the two is 385,000 km, and that the Earth has a mass 81x that of the Moon, how far is this point from Earth?


Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. They are then separated until the force between them is one ninth of the magnitude. What is the distance between the surfaces of the spheres?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences