How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?

  1. First, decompose the initial velocity (u) into x and y components using trigonometry. These are x= ucos(theta) and y=usin(theta)
  2. Note that the x (or horizontal) component does not change but the y component decreases as the projectile moves up because gravity.
  3. when the projectile is at its maximum height, its velocity is zero, so taking the first half of the flight motion and use v=u+at to find the time taken to reach maximum height.
  4. Then simply noticing that it takes the exact same amount of time to fall from the max height as it took to get there, we just multiply the time we found above by 2 to get the total time of flight.
JB
Answered by Jonathon B. Physics tutor

8730 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


Calculate the kinetic energy of a car of mass 1.0*10^3kg moving at speed of 20ms^-1.


What is Olbers' Paradox?


Explain how a stationary wave is produced when a string fixed at both ends is plucked


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning