An electrical heater supplies 500J of heat energy to a copper cylinder of mass 32.4g Find the increase in temperature of the cylinder. (Specific heat capacity of copper = 385 J*kg^-1*Celsius^-1

The temperature of a body of mass m and specific heat capacity c rises by change in temperature (delta)T when an amount of heat Q is added to it (Q = mc(delta)T). From the equation we see that the change in temperature is simply equal to the heat divided by the mass times the specific heat capacity of copper ((delta)T = Q / m*c). Now we can just plug in the numbers to find the answer. (Note that the mass is not given in SI units and we have to convert it 32.4g = 0.0324kg). From here follows that the increase in temperature is equal to 500 / 0.0324 * 385 or 40.0834, which we can round to 40.1 degrees Celsius.

VB
Answered by Viktoria B. Physics tutor

9450 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would we calculate the distance covered by a train that starts at rest, then accelerates to 5km/hr in 30 mins then stays at this constant speed for 12 minutes?


A projectile is launched from ground level with a speed of 25 m/s at an angle of 42° to the horizontal. What is the horizontal distance from the starting point of the projectile when it hits the ground?


What is the angular velocity of a car wheel which diameter is d = 15 mm if the car velocity is of 120 km/h?


Give the definition simple harmonic motion and write down the defining equation for such motion stating the meaning of any symbols involved.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning