A car of mass 800 kg is accelerated horizontally by constant net force of 1920 N for 9 s. It then breaks for 2 s, but drives off a 5 m high cliff. If μ = 0.85, what is the total horizontal distance travelled by car and its velocity? Ignore air resistance.

F=ma, so a=F/m giving a=2.4m/s^2. When t=9s, v=at, so v=21.6m/s. Friction force is Ff = μF(normal), which is Ff = μmg, so Ff = 6670.8N (if g = 9.81m/s^2). Frictional force always acts against the direction of motion. Deceleration due to frictional force d = -Ff/m = -μg = -8.34m/s^2. Speed after 2 seconds of deceleration = 4.9m/s. In free fall we can consider horizontal and vertical velocity components separately. Vertical: need time in which the car falls 5m. h = 1/2gt^2, so t = sqrt(2h/g), which is 1.04s. Horizontal: speed doesn't change, so the distance travelled is s = vt, s = 5.1m. Total horizontal distance: 1/2at^2 + vt + 1/2dt^2 + 5.1 = 128.82m. Considering velocity, we have to calculate both its magnitude and its direction, since velocity is a vector. At the end of free fall horizontal component didn't change, so it's equal to 4.9m/s, while vertical speed gained is v = gt, v = 10.2m/s. The magnitude of the final velocity is therefore sqrt((4.9)^2+(10.2)^2). Its direction is tan(θ) = opp/adj, giving us θ = 26°, or 154° away from normal.

MK
Answered by Martin K. Physics tutor

2818 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the life cycle of a star?


Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?


a ball is dropped from rest off a cliff of height 50m, determine the final velocity of the ball assuming no air resistance.


In an electric propulsion system, alpha particles are accelerated through a potential difference of 100kV at an average rate of 10^20 alpha particles per second. Calculate the average thrust the system can provide.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning