A car of mass 800 kg is accelerated horizontally by constant net force of 1920 N for 9 s. It then breaks for 2 s, but drives off a 5 m high cliff. If μ = 0.85, what is the total horizontal distance travelled by car and its velocity? Ignore air resistance.

F=ma, so a=F/m giving a=2.4m/s^2. When t=9s, v=at, so v=21.6m/s. Friction force is Ff = μF(normal), which is Ff = μmg, so Ff = 6670.8N (if g = 9.81m/s^2). Frictional force always acts against the direction of motion. Deceleration due to frictional force d = -Ff/m = -μg = -8.34m/s^2. Speed after 2 seconds of deceleration = 4.9m/s. In free fall we can consider horizontal and vertical velocity components separately. Vertical: need time in which the car falls 5m. h = 1/2gt^2, so t = sqrt(2h/g), which is 1.04s. Horizontal: speed doesn't change, so the distance travelled is s = vt, s = 5.1m. Total horizontal distance: 1/2at^2 + vt + 1/2dt^2 + 5.1 = 128.82m. Considering velocity, we have to calculate both its magnitude and its direction, since velocity is a vector. At the end of free fall horizontal component didn't change, so it's equal to 4.9m/s, while vertical speed gained is v = gt, v = 10.2m/s. The magnitude of the final velocity is therefore sqrt((4.9)^2+(10.2)^2). Its direction is tan(θ) = opp/adj, giving us θ = 26°, or 154° away from normal.

MK
Answered by Martin K. Physics tutor

2942 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State what is meant by a Doppler shift and describe how it was used to study the movement of galaxies.


When a particle travels in a circle of radius r, at constant speed v, what is its acceleration


In terms of particles, explain how resistance arises in metal conductors and why does this resistance increases with temperature.


How does conservation of momentum work when at least one of the bodies in the problem changes mass?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning