How do you show that the centre of a group is a subgroup

To show something is a subgroup we need to show that it satisfies the group axioms. Therefore we need to show that if g and h are in Z(G) then gh is in Z(G), g^-1 is in Z(G), the identity e is in Z(G). As eg = g = ge for all elements g in G we can see e is in Z(G). Then suppose we have g and h in Z(G). Then for all elements j in G we have ghj = gjh as h is in Z(G) = jgh as g is in Z(G). Therefore Z(G) is closed under the group operation. Also we have g^-1 j = g^-1 j e as e is the identity = g^-1 j g g^-1 by definition of inverses = g^-1 g j g^-1 as g is in Z(G) = e j g^-1 = j g^-1 and so g^-1 is in Z(G) and so Z(G) is closed under inverses and is therefore a subgroup of G

AR
Answered by Alex R. Further Mathematics tutor

2916 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

solve the 1st order differential equation 2y+(x*dy/dx)=x^3


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


Find the square roots of 2 + isqrt(5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences