How do you show that the centre of a group is a subgroup

To show something is a subgroup we need to show that it satisfies the group axioms. Therefore we need to show that if g and h are in Z(G) then gh is in Z(G), g^-1 is in Z(G), the identity e is in Z(G). As eg = g = ge for all elements g in G we can see e is in Z(G). Then suppose we have g and h in Z(G). Then for all elements j in G we have ghj = gjh as h is in Z(G) = jgh as g is in Z(G). Therefore Z(G) is closed under the group operation. Also we have g^-1 j = g^-1 j e as e is the identity = g^-1 j g g^-1 by definition of inverses = g^-1 g j g^-1 as g is in Z(G) = e j g^-1 = j g^-1 and so g^-1 is in Z(G) and so Z(G) is closed under inverses and is therefore a subgroup of G

AR
Answered by Alex R. Further Mathematics tutor

3233 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning