How do you show that the centre of a group is a subgroup

To show something is a subgroup we need to show that it satisfies the group axioms. Therefore we need to show that if g and h are in Z(G) then gh is in Z(G), g^-1 is in Z(G), the identity e is in Z(G). As eg = g = ge for all elements g in G we can see e is in Z(G). Then suppose we have g and h in Z(G). Then for all elements j in G we have ghj = gjh as h is in Z(G) = jgh as g is in Z(G). Therefore Z(G) is closed under the group operation. Also we have g^-1 j = g^-1 j e as e is the identity = g^-1 j g g^-1 by definition of inverses = g^-1 g j g^-1 as g is in Z(G) = e j g^-1 = j g^-1 and so g^-1 is in Z(G) and so Z(G) is closed under inverses and is therefore a subgroup of G

AR
Answered by Alex R. Further Mathematics tutor

3162 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning