Show that the inequality x^4 < 8x^2 + 9 is satisfied for when -3 < x < 3 .

(x^2 - 9)(x^2 + 1) < 0 solving the equation to get solutions to the equality (x^2 - 9)(x^2 + 1) = 0 : x = +/- 3 or x = +/- 1 now consider points either side of these x-intercepts... for x>3: equality is not satisfied for 1<x<3: equality is satisfied for -1<x<1: equality is satisfied for -3<x<-1: equality is satisfied for x<-3: equality is not satisfied

HT
Answered by Hakkihan T. MAT tutor

1277 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

We define the digit sum of a non-negative integer to be the sum of its digits. For example, the digit sum of 123 is 1 + 2 + 3 = 6. Let n be a positive integer with n < 10. How many positive integers less than 1000 have digit sum equal to n?


What is the square root of the imaginary number i?


Given a + b = 20, find the maximum value of ba^2.


When is the inequality x^4 < 8x^2 + 9 true?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning