Show that the inequality x^4 < 8x^2 + 9 is satisfied for when -3 < x < 3 .

(x^2 - 9)(x^2 + 1) < 0 solving the equation to get solutions to the equality (x^2 - 9)(x^2 + 1) = 0 : x = +/- 3 or x = +/- 1 now consider points either side of these x-intercepts... for x>3: equality is not satisfied for 1<x<3: equality is satisfied for -1<x<1: equality is satisfied for -3<x<-1: equality is satisfied for x<-3: equality is not satisfied

HT
Answered by Hakkihan T. MAT tutor

1308 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

If f(x) =x^2 - 5x + 7 what are the coordinates of the minimum of f(x-2)?


Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?


How do you differentiate ln(f(x))? Tricks like these occur commonly in STEP questions (including one I was looking at earlier today).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning