Show that the inequality x^4 < 8x^2 + 9 is satisfied for when -3 < x < 3 .

(x^2 - 9)(x^2 + 1) < 0 solving the equation to get solutions to the equality (x^2 - 9)(x^2 + 1) = 0 : x = +/- 3 or x = +/- 1 now consider points either side of these x-intercepts... for x>3: equality is not satisfied for 1<x<3: equality is satisfied for -1<x<1: equality is satisfied for -3<x<-1: equality is satisfied for x<-3: equality is not satisfied

HT
Answered by Hakkihan T. MAT tutor

1283 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Can you please help with Question 5 on the 2008 MAT?


How many 0's are at the end of 100! (100 factorial)?


When is the inequality x^4 < 8x^2 + 9 true?


Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning