Show that the inequality x^4 < 8x^2 + 9 is satisfied for when -3 < x < 3 .

(x^2 - 9)(x^2 + 1) < 0 solving the equation to get solutions to the equality (x^2 - 9)(x^2 + 1) = 0 : x = +/- 3 or x = +/- 1 now consider points either side of these x-intercepts... for x>3: equality is not satisfied for 1<x<3: equality is satisfied for -1<x<1: equality is satisfied for -3<x<-1: equality is satisfied for x<-3: equality is not satisfied

HT
Answered by Hakkihan T. MAT tutor

1196 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Circle the correct letter: The equation x^3 - 30x^2 + 108x - 104 = 0 has a) No real roots; b) Exactly one real root; c) Three distinct real roots; d) A repeated root.


How do you solve hard integration questions using information you know


The inequality x^4 < 8x^2 + 9 is satisfied precisely when...


When is the inequality x^4 < 8x^2 + 9 true?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences