If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...

The first thought when trying to solve such a problem is that you might be able to write this sum as a geometric progression. Luckily, it is the case here as well, as we can observe that S is the derivative (with respect to x) of another sum: P = x + x^2 + x^3 + ... . We can easily find P = x * (1-x^N)/(1-x), where N tends to infinity so P reduces to P = x/(1-x). Now, in order to calculate S, we ca simply take the first order derivative of P and find that S=1/(1-x)^2.

HM
Answered by Horia M. Further Mathematics tutor

2661 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove ∑r^3 = 1/4 n^2(n+1)^2


Express the complex number (1+i)/(1-i) in the form x+iy


Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.


How do you plot a complex number in an Argand diagram?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning