f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.

x=5 is a solution, so (x-5) is a factor of f(x). So, to find the other solutions, factorise f(x): f(x)=(x-5)(ax^2+bx+c). We know it will be of this form because f(x) is cubic. To find the values of a, b and c, start by seeing what will multiply by x to get 9x^3. 9x^2 * x = 9x^2, so a=9, so we have f(x)=(x-5)(9x^2+...)=9x^3-45x^2+... . To get the coefficient of x^2 in f(x) to be -33 we need to add 12x^2, so b=12, f(x)=(x-5)(9x^2+12x+...)=9x^3-45x^2+12x^2-60x=9x^3-33x^2-60x. To get the coefficient of x in f(x) to be -55 we need to add 5x, so c=5. If 5 is a factor, we will get f(x) from these a, b and c values. f(x)=(x-5)(9x^2+12x+5)=9x^3+12x^2+5x-45x^2-60x-25=9x^3-33x^2-55x-25. Now we need to find the roots of 9x^2+12x+5. We cannot factorise it, so try the quadratic formula (using (+-) to represent the plus or minus symbol): x = (-12(+-)sqrt(12^2-4(95))/(29)=(-12(+-)sqrt(-36))/18=-12/18 (+-)6i/18=-2/3 (+-)i/3. Hence the solutions to f(x)=0 are x = 5, -2/3 + i/3, -2/3 - i/3.

PR
Answered by Poppy R. Further Mathematics tutor

8976 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you find the determinant of a matrix?


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


How do you calculate the derivative of cos inverse x?


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences