What is natural frequency and how is it associated with resonance?

When anything is hit it will vibrate at the same frequency regardless of the force that hits it. This frequency of un-damped oscillations is the natural frequency. And every object/system has its own set of natural frequencies. If an object is subject to a driving force (external periodic force), it will vibrate at the frequency of this driving force and not the natural frequency. Resonance is where the amplitude of the forced vibration reaches a maximum. If the driving force frequency corresponds with the natural frequency of a system this will cause resonance. This happens at this point due to this is where maximum energy transfer from the driving system into the oscillating system occurs. Resonance is usually avoided due to the increase in amplitude of vibrations can get to dangerous levels. But it does have uses for example- in musical instruments such as the guitar.

Further from A-Level- Damping is where energy is being removed from a system. And this is what causes free vibrations (vibrations caused by initial conditions) to get gradually smaller and eventually stop. This can be caused by anything from air resistance to friction within a bearing.
If there is damping within the system. Then the maximum amplitude for the forced vibration will occur slightly lower than the natural frequency.

HM
Answered by Henry M. Physics tutor

12558 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A projectile is launched with a speed of 10m/s at an angle 30 degrees from the positive x axis. What is the range of the projectile?


What is the difference between free vibrations and forced vibrations?


Draw the I-V curves of both an ideal resistor and a filament bulb. Explain the key features of both.


The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning