Derive the escape velocity from the surface of a planet with radius, r, and mass, M.

This question is about converting kinetic energy into gravitational potential energy. Escape velocity is the speed required to leave the gravitational field of a mass, in this case it's a planet. In other words the body has to be moving at such a velocity that it will reach a point infinitely far away from the planet.

The gravitational potential energy (PE) at any given point is given as:

PE = -GMm/r

Where G is Newton's gravitational constant; M is the mass of the planet; m is the mass of the body moving away from the planet and r is the distance from the centre of the planet/gravitational field.

Using this formula the potential energy at a distance infinitely far away (infinity) is 0. At the surface of the planet the potential energy is:

-GMm/r

This means that in order to get from the surface to infinity there will be a gain of

GMm/r

This will come from the kinetic energy of the body escaping.

Kinetic Energy (KE) is given as:

KE = mv2/2 

Where m is the mass of the moving body and v is it's velocity.Now we have all we need to solve this problem

If we set the kinetic and potential energy equal to each other:

KE = PE

mv2/2 = GMm/r 

Divide by m on both sides, this gets rid of all mentions of m. That means the final answer will not depend on the mass leaving the planet at all! 

v2/2 = GM/r 

Rearrange: 

v = sqrt(2GM/r)

sqrt() means take the square root of what is inside the bracket.

Interesting related fact: 

A black hole is an object that has an escape velocity that is greater than the speed of light. This means not even light can escape the gravitational pull of a black hole!!!

TR
Answered by Thomas R. Physics tutor

17599 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does light from distant stars show how fast they are moving away from us.


A gold leaf electroscope with a zinc plate top is charged by briefly connecting it to the negative electrode of a high-voltage supply. Explain how the gold leaf will appear and how the leaf can be caused to drop again.


Explain why the pressure exerted by a gas increases as they are heated at constant volume, with references to the kinetic theory of gases.


A circuit with a voltage source of 18V, has 3 resistors all connected on parallel, values at 2ohms, 6ohms and 7.5ohms. Find the total circuit resistance, and then subsequently, the total current supplied and power dissipated in the curcuit.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences