What are the different forms of complex numbers and how do you convert between them?

Complex numbers have three primary forms: the general form, z=a+ib; the polar form, z=r(cosθ+isinθ); and the exponential form, z=rexp(iθ). To convert from the general form to either form you need to find r and θ: r is known as the modulus of z, by referring to an Argand diagram the modulus of z is the length of the line z=a+ib, so to find the modulus you use Pythagoras. θ is called the argument of z and is found by looking at the trigonometry of the line; the two components of z are the opposite and adjacent so you can use tanθ=b/a and rearrange for θ. To work in reverse it is best to use the polar form of the complex number as you simply set a=rcosθ and b=rsinθ.

PL
Answered by Peter L. Further Mathematics tutor

39779 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove ∑r^3 = 1/4 n^2(n+1)^2


find general solution to: x(dy/dx) + 2y = 4x^2


Use the geometric series e^(ix) - (1/2)e^(3ix) + (1/4)e^(5ix) - ... to find the exact value sin1 -(1/2)sin3 + (1/4)sin5 - ...


Are we able to represent linear matrix transformations with complex numbers?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning