What are the different forms of complex numbers and how do you convert between them?

Complex numbers have three primary forms: the general form, z=a+ib; the polar form, z=r(cosθ+isinθ); and the exponential form, z=rexp(iθ). To convert from the general form to either form you need to find r and θ: r is known as the modulus of z, by referring to an Argand diagram the modulus of z is the length of the line z=a+ib, so to find the modulus you use Pythagoras. θ is called the argument of z and is found by looking at the trigonometry of the line; the two components of z are the opposite and adjacent so you can use tanθ=b/a and rearrange for θ. To work in reverse it is best to use the polar form of the complex number as you simply set a=rcosθ and b=rsinθ.

PL
Answered by Peter L. Further Mathematics tutor

36379 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the modulus and argument of the complex number 1+2i


How do i figure out if integrals are improper or not and how do i know which limit is undefined?


How to determine the rank of a matrix?


A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences