Describe and explain the motion of a skydiver from leaving the aircraft to reaching terminal velocity

Initially, there is only one force acting on the skydiver, which is their weight. F=ma therefore mg=ma. The m's cancel and the skydiver falls with acceleration g. However as soon as they have a downwards velocity, drag acts upwards to oppose this motion. As the velocity increases, the drag increases and therefore the force acting downwards on the skydiver decreases. This continues until the drag force is equal to the weight of the skydiver. At this point there is no net force on the skydiver and since F=ma, this means that there is no acceleration and the skydiver is in freefall and has reached their terminal velocity

OF
Answered by Ollie F. Physics tutor

5569 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If a car is travelling over a curved hill, what is the maximum speed it can travel before losing contact with the road surface?


From the definition of the decay constant for nuclear decay, derive the exponential decay equation.


Describe and explain how a constant rate of fission is maintained in a reactor by considering what events or sequence of events may happen to the released neutrons. (6 marks)


What is the quark composition of a proton?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences