Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3

First we need to find the critical values. To find the critical values we must rearrange the equation and then replace the inequality symbol with an equals sign. The ≤ can be treated as an equality as long as both sides are not divided or multiplied by a negative number. So we multiply both sides by ((x+2)^2)(x-3)^2. We square the denominator so as to ensure it is not a negative number. Now we have (x/(x+2))((x+2)^2)(x-3)^2 ≤ (4/(x-3))((x+2)^2)(x-3)^2 which we can cancel and collect the terms on the LHS to get x(x+2)(x-3)^2 - 4(x-3)*(x+2)^2 ≤ 0.

Now rearrange to see that (x+2)(x-3)(x(x-3)-4(x+2)) ≤ 0 (x+2)(x-3)(x^2-3x-4x-8) ≤ 0 (x+2)(x-3)(x-7x-8) ≤ 0 (x+2)(x-3)(x-8)(x+1) ≤ 0 So the critical values are x = -2,3,8 and -1 and these points are where the graph crosses the x axes and therefore where the function is equal to zero.

Finally we need to check the 5 regions of numbers given by the 4 critical values. These are (-∞,-2),(-2,-1),(-1,3),(3,8) and (8,∞). An easy way to do this is to pick an easy number in-between the end points and plug this number into the rearranged LHS equation we have above, counting the negative and postive brackets. Call this equation F(x) = (x+2)(x-3)(x-8)(x+1) then F(-5) is greater than zero F(-1.5) is less than zero F(1) is greater than zero F(5) is less than zero and F(10) is greater than zero

so x/(x+2) ≤ 4/(x-3) when -2 < x ≤ -1 and when 3 < x ≤ 8

GS
Answered by Gabriel S. Further Mathematics tutor

3649 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express the complex number (1+i)/(1-i) in the form x+iy


Given that y = arcsinh(x), show that y=ln(x+ sqrt(x^2 + 1) )


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning