FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)

Let the 2x2 matrix= A. Using the characteristic equation for A (det(A-λI)=0), find the determinant of the matrix (2-λ,1) and (3,-λ). This results in the quadratic λ^2-2λ-3 so λ=3,-1. From the definition of the eigenvector,v, Av=λv. Let v be the column vector (x,y), and for λ=-1 we get the simultaneous equations 2x+3y=x and x=-y, which results in the eigenvector (1,-1).

BM
Answered by Ben M. Further Mathematics tutor

2755 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find all square roots of the number 3 + 4i.


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


Given that the quadratic equation x^2 + 7x + 13 = 0 has roots a and b, find the value of a+b and ab.


Prove by induction that n^3+5n is divisible by 3 for every natural number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning