Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?

a) Create an inequality in x: (x+3)(x-4)<2. Expand and find the critical points, x^2-x-14>0. Find the answers to this inequality using quadratic formula and then test for a value between your two critical points x0=(1+sqrt(57))/2 and x1=(1-sqrt(57))/2. Also as x-4=0 at x=4 we need to consider the asympotote at x=4. As 0 in the original equation satisfies the inequality, use x=0 as a test as it is between the two cvs we can conclude that to satisfy the inequality, x1<x4. b)if for x+3>2mod(x-4) the equation is the same for x>4. For x<4 then we need to compare with (x+3)>-2/(x-4), Therefore expand to get x^2 -x-10<0. The roots of this equation are x=(1+-sqrt(41))/2. Then compare with x=0 again and find that x>4, (1+sqrt(41))/2>x>(1-sqrt(41))/2

BH
Answered by Benjamin H. Further Mathematics tutor

2172 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


z = 50 / (3+4i). What is z in a+bi form?


Given that the quadratic equation x^2 + 7x + 13 = 0 has roots a and b, find the value of a+b and ab.


How do I sketch the locus of |z - 5-3i | = 3 on an Argand Diagram?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences