Integrate xcos(x) with respect to x

Using LATEX (Logarithms, Algebra, Trigonometry, Exponential and Complex numbers) to determine which variable is du and which is dv/dx. This is decided by using the above acronym. For example in this question 'x' is an algebraic variable and 'cos(x)' is a trigonometric variable, hence 'x' is du and cos(x) is dv/dx. To solve this question, we use integration by parts and use the following formula. du.dv- integral(dv.(du/dx)dx).

du = x hence du/dx = 1 (differentiate du) dv/dx = cosx hence dv = sinx (integrate dv/dx)

Plug in the values in the above equation.

Ans = xsinx + cosx + c

VP
Answered by Vishnu P. Further Mathematics tutor

2454 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

if y = (e^x)^7 find dy/dx


Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.


Solve for z in the equation sin(z) = 2


For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences