Integrate xcos(x) with respect to x

Using LATEX (Logarithms, Algebra, Trigonometry, Exponential and Complex numbers) to determine which variable is du and which is dv/dx. This is decided by using the above acronym. For example in this question 'x' is an algebraic variable and 'cos(x)' is a trigonometric variable, hence 'x' is du and cos(x) is dv/dx. To solve this question, we use integration by parts and use the following formula. du.dv- integral(dv.(du/dx)dx).

du = x hence du/dx = 1 (differentiate du) dv/dx = cosx hence dv = sinx (integrate dv/dx)

Plug in the values in the above equation.

Ans = xsinx + cosx + c

VP
Answered by Vishnu P. Further Mathematics tutor

2917 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


Solve this equation: x^2 + 2x + 2


Prove De Moivre's by induction for the positive integers


Find the determinant of matrix M. [3]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning