f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).

Finding f(x) requires integrating the function f'(x), because f(x) is the integral of the given function f'(x). So {integralsymbol} f'(x) dx = {integralsymbol} (3x^2 - 5cos(3x) + 90) dx = x^3 - (5/3)sin(3x) + 90x +Constant = f(x) Next differentiate f'(x) to get f''(x), because f''(x) is the derivative of f'(x). So f''(x) = d/dx (3x^2 - 5cos(3x) + 90). This is 6x+15sin(x).

CO
Answered by Charles O. Further Mathematics tutor

2086 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15


How can you divide an algebraic expression by another algebraic expression?


Find the coordinates of any stationary points of the curve y(x)=x^3-3x^2+3x+2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences