f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).

Finding f(x) requires integrating the function f'(x), because f(x) is the integral of the given function f'(x). So {integralsymbol} f'(x) dx = {integralsymbol} (3x^2 - 5cos(3x) + 90) dx = x^3 - (5/3)sin(3x) + 90x +Constant = f(x) Next differentiate f'(x) to get f''(x), because f''(x) is the derivative of f'(x). So f''(x) = d/dx (3x^2 - 5cos(3x) + 90). This is 6x+15sin(x).

CO
Answered by Charles O. Further Mathematics tutor

2051 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

If y=x^3+9x, find gradient of the tangent at (2,1).


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


How can I find the equation of a straight line on a graph?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences