f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).

Finding f(x) requires integrating the function f'(x), because f(x) is the integral of the given function f'(x). So {integralsymbol} f'(x) dx = {integralsymbol} (3x^2 - 5cos(3x) + 90) dx = x^3 - (5/3)sin(3x) + 90x +Constant = f(x) Next differentiate f'(x) to get f''(x), because f''(x) is the derivative of f'(x). So f''(x) = d/dx (3x^2 - 5cos(3x) + 90). This is 6x+15sin(x).

CO
Answered by Charles O. Further Mathematics tutor

2216 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning