Find the solution of 3^{4x} = 9^{(x-1)/2}.

First, recognise that 3^2 = 9. Recall the rule for multiplying indices, that (a^b)^c = a^{bc}. Then, substitute 3^2 in place of 9 to get 3^{4x} = (3^2)^{(x-1)/2}. Use the rule for multiplying indices, so that the equation is now 3^{4x} = 3^{x-1}. This implies 4x=x-1, and therefore 3x = -1, and finally, x = -1/3 is the solution.

CO
Answered by Charles O. Further Mathematics tutor

2321 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve the simultaneous equations xy=2 and y=3x+5.


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


Find and describe the stationary points of the curve y = x^2 + 2x - 8


Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning