For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.

f'(x)=-2(3x+4)^(-3) * 3 = -6(3x+4)^(-3);
f''(x)= 18(3x+4)^(-4) * 3 = 54(3x+4)^(-4);
both found by using the chain rule for differentiation.

Then Maclaurin series up to x^2 is: f(x)=f(0)+f'(0)x+1/2 f''(0)x^2;
Which here gives f(x)=4^(-2) - 6*(4)^(-3) x + 27*(4)^(-4) x^2.

JM
Answered by James M. Further Mathematics tutor

3414 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Finding modulus and argument of complex number (x+iy)


Find the general solution of: y'' + 4y' + 13y = sin(x)


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences