For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.

f'(x)=-2(3x+4)^(-3) * 3 = -6(3x+4)^(-3);
f''(x)= 18(3x+4)^(-4) * 3 = 54(3x+4)^(-4);
both found by using the chain rule for differentiation.

Then Maclaurin series up to x^2 is: f(x)=f(0)+f'(0)x+1/2 f''(0)x^2;
Which here gives f(x)=4^(-2) - 6*(4)^(-3) x + 27*(4)^(-4) x^2.

JM
Answered by James M. Further Mathematics tutor

3833 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

FP1 June 2016 Edexcel Exam Paper Question 7


Why is the argument of a+bi equal to arctan(b/a)?


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning