For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.

f'(x)=-2(3x+4)^(-3) * 3 = -6(3x+4)^(-3);
f''(x)= 18(3x+4)^(-4) * 3 = 54(3x+4)^(-4);
both found by using the chain rule for differentiation.

Then Maclaurin series up to x^2 is: f(x)=f(0)+f'(0)x+1/2 f''(0)x^2;
Which here gives f(x)=4^(-2) - 6*(4)^(-3) x + 27*(4)^(-4) x^2.

JM
Answered by James M. Further Mathematics tutor

3263 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles


y = artanh(x/sqrt(1+x^2)) , find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences