For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.

f'(x)=-2(3x+4)^(-3) * 3 = -6(3x+4)^(-3);
f''(x)= 18(3x+4)^(-4) * 3 = 54(3x+4)^(-4);
both found by using the chain rule for differentiation.

Then Maclaurin series up to x^2 is: f(x)=f(0)+f'(0)x+1/2 f''(0)x^2;
Which here gives f(x)=4^(-2) - 6*(4)^(-3) x + 27*(4)^(-4) x^2.

JM
Answered by James M. Further Mathematics tutor

3560 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Why is the argument of a+bi equal to arctan(b/a)?


Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


Calculate: ( 2+i√(5) )( √(5)-i).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning