The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.

Energy = force x distance and Energy = 0.5 x mass x velocity squared

Hence, force = (0.5 x mass x velocity squared) / distance --- (equation 1) This applies for both situation A and B, and given that force is stated to be the same in each case, and mass is the same, we can equate eqn 1 for each.

Hence, (0.5 x mass x velocity(A) squared) / distance(A) = (0.5 x mass x velocity(B) squared) / distance(B)

and so distance(B) = (velocity(B) squared x distance(A)) / (velocity(A) squared) = (25^2 x 70) / 15^2 = 194m

JJ
Answered by Jack J. Physics tutor

10352 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).


Describe and explain how a constant rate of fission is maintained in a reactor by considering what events or sequence of events may happen to the released neutrons. (6 marks)


Why does an α particle cause more ionisation than a β particle if they have the same kinetic energy?


A mass, m, is resting on a slope being slowly tilted upwards from horizontal. The static friction co-efficient is 0.3 and the dynamic friction co-efficient is 0.2: at what angle will the mass begin to slip?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning