The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.

Energy = force x distance and Energy = 0.5 x mass x velocity squared

Hence, force = (0.5 x mass x velocity squared) / distance --- (equation 1) This applies for both situation A and B, and given that force is stated to be the same in each case, and mass is the same, we can equate eqn 1 for each.

Hence, (0.5 x mass x velocity(A) squared) / distance(A) = (0.5 x mass x velocity(B) squared) / distance(B)

and so distance(B) = (velocity(B) squared x distance(A)) / (velocity(A) squared) = (25^2 x 70) / 15^2 = 194m

JJ
Answered by Jack J. Physics tutor

10359 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.


What are quarks?


What is the Photoelectric effect?


During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning