The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.

Energy = force x distance and Energy = 0.5 x mass x velocity squared

Hence, force = (0.5 x mass x velocity squared) / distance --- (equation 1) This applies for both situation A and B, and given that force is stated to be the same in each case, and mass is the same, we can equate eqn 1 for each.

Hence, (0.5 x mass x velocity(A) squared) / distance(A) = (0.5 x mass x velocity(B) squared) / distance(B)

and so distance(B) = (velocity(B) squared x distance(A)) / (velocity(A) squared) = (25^2 x 70) / 15^2 = 194m

JJ
Answered by Jack J. Physics tutor

10050 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the workings behind the Photoelectric effect


An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.


A boy (25kg) and a girl (20kg) are playing on a see-saw which is 4m long. If the boy sits 1m from the centre on the left side and the girl 2m from the centre on the other, which direction will the see-saw will rotate around its centre?


What is dimensional analysis and how is it used?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning