Solve (z-i)+(z+i)+(z-1)+(z-1)

Since we are dealing with complex numbers and taking its modulus, we can rewrite (z-i)=((-1)(i-z))=(i-z) doing the same for (z-1)=(1-z) we get (i-z)+(z+i)+(1-z)+(z-1)=(i+i+z-z+1+1+z-z) =(2i+2)=4 as we are taking its modulus.

YZ
Answered by Yubo Z. Further Mathematics tutor

3364 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is sin(x)/x for x =0?


What is De Moivre's theorem?


Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences