Solve (z-i)+(z+i)+(z-1)+(z-1)

Since we are dealing with complex numbers and taking its modulus, we can rewrite (z-i)=((-1)(i-z))=(i-z) doing the same for (z-1)=(1-z) we get (i-z)+(z+i)+(1-z)+(z-1)=(i+i+z-z+1+1+z-z) =(2i+2)=4 as we are taking its modulus.

YZ
Answered by Yubo Z. Further Mathematics tutor

3548 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning